INTERCHANGE MODIFICATION STUDY

PREPARED BY TRANSYSTEMS

FOR

THE TENNESSEE DEPARTMENT OF TRANSPORTATION PROJECT PLANNING DIVISION

November 2011

TABLE OF CONTENTS

Execut	ive Su	ummary	iv
1.0	Introd	luction	1
	1.1	Study Scope	1
	1.2	Project Need	1
	1.3	Description of Project Area	2
	1.4	Relationship to Other Highway Improvement Plans and Programs	6
2.0	Prelin	ninary Planning Data	9
	2.1	Land Use	9
	2.2	Environmental Concerns	12
	2.3	Traffic Served	12
	2.4	Discussion of Interchange Concepts	15
3.0	Engin	eering Investigation	20
	3.1	Traffic Operations	20
	3.2	Crash Analysis	27
	3.3	S.R. 222 Bridge Inspection Report	28
	3.4	Wastewater Treatment Facility	29
	3.5	Interchange Concept Evaluation Comparison	29
	3.6	Access Analysis (FHWA Eight Policy Points)	33
		FHWA Prompt-List for Reviewing Interstate Access Requests (Concepts 1 and 5)	
4.0	Sumn	nary and Conclusions	38
	4.1	TDOT Design Concurrence Letter and Local Agency Letters of Support	38
Tables			
1.1	-	U.S. Census Population Trends	6
2.1	-	Historical Traffic Volumes Growth Rate Summary	13
2.2	-	Estimated Development Build-Out Trips	14
2.3	-	Description of Interchange Concepts	15
3.1	-	Level of Service (LOS) Description	20
3.2	-	Traffic Volumes (Two-Way) and Truck Percentages	21
3.3 – 3.	8 -	Capacity Analysis Results	22-27
3.9	-	I-40/S.R. 222 Crash Data Summary	28

Figur	es		
1.1	-	Location Map	3
1.2	-	Existing Interchange Overview	4
1.3	-	Northbound on S.R. 222	5
1.4	-	Southbound on S.R. 222	5
1.5	-	Concept Relationship	8
2.1	-	Abandoned Gas Station and UST's	9
2.2	-	Pilot Travel Center	10
2.3	-	Deerfield Inn	10
2.4	-	Exxon Gas Station/Convenience Store	11
2.5	-	Bethlehem Hebron Chapel Church	11
2.6	-	TDOT Traffic Count Stations	12
2.7	-	Combination Interchange Option (with Shared Frontage Road)	19
2.8	-	Combination Interchange Option (with Separate Frontage Roads)	19
3.1	-	Concept 1	31
3.2	-	Concept 5	32

Appendix

- A Traffic Data
- B Concept Figures
- C Cost Estimate Worksheets
- D Highway Capacity Analysis Output Files

1.0 INTRODUCTION

1.1 Study Scope

The scope of this study is to provide a detailed evaluation of potential modifications and/or configurations to better accommodate existing and future traffic for the study interchange of I-40 at S.R. 222 (Exit 42). This study addresses the issues required to obtain Federal Highway Administration (FHWA) approval for an interchange modification, consistent with the Tennessee Department of Transportation's (TDOT) roadway design standards. This report considers existing and future traffic conditions in the project study area to assess the potential traffic impacts on the interstate and connecting roadway system over a twenty (20) year planning horizon.

1.2 Project Need

The request for upgrading the study interchange was initiated by the Tennessee Department of Economic and Community Development (ECD) on behalf of the Tennessee Valley Authority (TVA). In March 2007, the University of Memphis conducted an economic research study on land adjacent to the interchange area referred to as the Memphis-Jackson I-40 Advantage Megasite. The report, *The Potential Economic Impact of an Automobile Assembly Plant: I-40 Advantage Auto Park*, discusses the economic impacts and characteristics of the Megasite totaling approximately 2,000 jobs and evaluates the potential for this location to bring jobs, income, and tax revenue to the citizens of West Tennessee.

TVA's Megasite Program offers sites suitable for large-scale manufacturing that are certified as ready for development. To be certified, a large land parcel must meet the criteria of being ready for sale, accessible to utilities, and physically developable. The proposed improvements for the study interchange are essential to the development of the Megasite located on the north side of I-40 within the study area as shown in *Figure 1.1*.

The adjacent interchanges as described in **Section 1.3** are too far away to adequately serve the Megasite. The local road system is adequate for the current land uses in the vicinity of the study interchange. However, if the Megasite is developed, the local road system and existing interchange will not provide the necessary capacity and the desired access to function adequately. As detailed in **Section 3.1**, the capacity of the study interchange will be at LOS F if the Megasite is developed without modifications to the interchange.

The existing two (2) lane S.R. 222 bridge is constructed over I-40 on a fifty-two (52) degree skew angle. The latest bridge inspection report was conducted on December 14, 2010. During this inspection, the overall condition of the study bridge was determined to be rated fair with a sufficiency rating of 63.2. TDOT Structures Division has determined that the existing bridge consists of four (4) spans and is not a candidate for retrofit and needs to be replaced for the following reasons:

- Any new bridge would be a two (2) span structure for the safety of motorists travelling on I-40.
- A two (2) span structure would accommodate any future widening of I-40 without additional bridge modifications.
- The cost of widening the existing structure to accommodate the required travel lanes plus full shoulders would be greater than the cost of replacing the entire structure.

The ECD has agreed to provide 100% of the funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements. Even though there are no confirmed developments for the Megasite, the ECD envisions that all of the paperwork including construction design documents be completed and are shovel-ready projects when a tenant for the Megasite is identified so that the roadway improvements can be in place in conjunction with the opening of the Megasite.

1.3 Description of Project Area

The I-40 at S.R. 222 (Exit 42) study interchange, a traditional diamond interchange, is located in Fayette County near Mile Marker 42. Within the interchange study area, I-40 is a four (4) lane divided, limited access interstate facility and S.R. 222 is a two (2) lane arterial facility that bridges over I-40. S.R. 222, also known as Stanton-Somerville Road, provides direct interstate access to Stanton to the north side and Sommerville to the south. Sommerville is the County Seat for Fayette County.

The nearest interchange to the east along I-40 is located at Exit 47 (Dancyville Road) and the nearest interchange to the west is located at Exit 35 (S.R. 59). These adjacent I-40 interchanges are approximately five (5) miles to the east and seven (7) miles to the west, respectively.

Figure 1.1 depicts the study location and the surrounding area with the proximity of the adjacent interchanges highlighted and the approximate location of the Megasite. **Figure 1.2** shows the study interchange area on an aerial photograph. **Figure 1.3** and **Figure 1.4** depict the northbound and southbound views along S.R. 222, respectively.

Figure 1.1 – Location Map

Figure 1.2 – Existing Interchange Overview

Figure 1.3 – Northbound on S.R. 222

Population and Growth

Table 1.1 presents population trends for the area. From the year 1990 to 2009, the population in Fayette County increased by 52% while Haywood County decreased by 3%, respectively. For comparison, the statewide pace increased during the same period by 29%. The difference in growth between Fayette and Haywood Counties is mainly due to the influence of the Memphis suburban growth on the western area of Fayette County, which is approximately twenty (20) miles west of the study interchange. The Megasite development area is entirely in Haywood County and closer to the study interchange (located just south of the county line in Fayette County) than the primary population centers in Fayette County.

Year	Fayette County	Haywood County	Tennessee
1990	25,509	19,437	4.9 mil
2000	28,806	19,797	5.7 mil
2009 (Est.)	38,785	18,881	6.3 mil

Table 1.1 – U.S. Census Population Trends

1.4 Relationship to Other Highway Improvement Plans and Programs

In 2009, Tennessee Governor Phil Bredesen requested the State's General Assembly to include approximately \$27 million in next fiscal-year's budget for the construction of roads, bridges, water and sewer lines, and other infrastructure items related to the potential Megasite. The proposed modifications to the I-40 at S.R. 222 (Exit 42) interchange will provide significant transportation significant infrastructure improvements for the Megasite. The request was approved. Currently, the ECD has authorized funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements in conjunction with this study.

This Interchange Modification Study (IMS) is being prepared in conjunction with other studies, planned projects, and consideration for future needs within the study area. The following summarizes these considerations and efforts:

I-40/I-81 Corridor Feasibility Study

In 2007, Parsons Brinckerhoff prepared an I-40/I-81 Corridor Feasibility Study for TDOT. Based on the findings of the study, the I-40 corridor will merit at least one (1) additional lane in each direction in the future.

S.R. 222 Relocation & System Improvements Feasibility Study

A draft study was prepared in 2009 to evaluate the feasibility of improving S.R. 222 to better meet the needs of the area necessitated if the Megasite is developed. The S.R. 222 study limits extended 5.81 miles from the I-40 interchange in Fayette County to the intersection of S.R. 1 (U.S. 70/U.S. 79) in Haywood County. The feasibility study established the immediate and long-term needs of the study area and assessed various options for meeting these needs in the future. One need is to relocate the alignment of S.R. 222 to allow for the full development of the Megasite area.

The ECD has agreed to provide 100% of the funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements. Even though there are no confirmed developments for the Megasite, the ECD envisions that all of the paperwork including

construction design documents be completed and are shovel-ready projects when a tenant for the Megasite is identified so that the roadway improvements can be in place in conjunction with the opening of the Megasite.

Potential I-40 Interchange Justification Study (IJS)

There is a potential need for a new interchange to the east if the Megasite is developed and demand exceeds the capacity at an improved Exit 42 interchange. A new interchange is solely dependent upon the potential development of the Megasite and the ability to accommodate capacity at the existing Exit 42 interchange. Preliminary analysis was conducted to investigate the viability of providing a new interchange on I-40 between the existing interchanges at Exit 42 (S.R. 222) in Fayette County and Exit 47 (Dancyville Road) in Haywood County. The analysis conceptualized the proposed interchange configuration is a trumpet layout with a bridge over I-40 connecting to a new State Industrial Access (SIA) roadway on the north side of I-40. Auxiliary lanes along I-40 are included in conjunction with the addition of a new interchange.

Potential State Industrial Access (SIA) Road to Connect the Potential I-40 Interchange Similar to the new interchange, the State Industrial Access (SIA) road is directly dependent upon the potential new interchange and the development of the Megasite. The SIA provides an alternative connection from the Megasite to the potential new interchange on I-40.

Figure 1.5 (Concept Relationship) presents a depiction of how these future (potential and feasibility study) projects relate to the improvements at the I-40/S.R. 222 interchange.

2.0 PRELIMINARY PLANNING DATA

2.1 Land Use

The land in the vicinity of the study interchange is a mixture of various commercial, residential, agricultural, and institutional land uses. Specific areas adjacent to this interchange are discussed below.

Northeast Quadrant

In the study interchange's northeast quadrant, there is an abandoned service station shown in *Figure 2.1*. Underground storage tanks (UST's) exist on this abandoned site.

Figure 2.1 – Abandoned Service Station and UST's

Northwest Quadrant

In the study interchange's northwest quadrant, the land use is primarily agricultural with some residential. No commercial development exists in this quadrant.

Southeast Quadrant

In the study interchange's southeast quadrant, there is a truck stop (Pilot Travel Center) and a hotel (Deerfield Inn) shown in *Figure 2.2* and *Figure 2.3*, respectively. The Pilot Travel Center consists of many uses (truck stop/gas station/convenience store). As a result, the truck percentage within the vehicle classification composition on S.R. 222 between I-40 and the Pilot Travel Center is almost half (48%). In addition, there is a waste water treatment facility located adjacent to I-40 that is owned by the Pilot Travel Center and also used by the Deerfield Inn.

Figure 2.2 – Pilot Travel Center

Southwest Quadrant

In the study interchange's southwest quadrant, there is a gas station/convenience store (Exxon) and a church (Bethlehem Hebron Chapel) shown in *Figure 2.4* and *Figure 2.5*, respectively. A cemetery is adjacent to the church.

Figure 2.4 – Exxon Gas Station/Convenience Store

Northern Area

The northern area along S.R. 222 contains agricultural and residential land uses along with some commercial land uses, a service station (Earl's Garage) and a motel (America's Best Value Inn).

Southern Area The southern area along S.R. 222 is primarily undeveloped with some agricultural and residential land uses.

2.2 Environmental Concerns

There are UST's in three (3) of the four (4) quadrants of the study interchange. Other concerns include potential impacts to the waste water treatment facility in the southeast quadrant. Two (2) concepts discussed later in this report include widening S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange.

As this project progresses in the National Environmental Policy Act (NEPA) planning process, it will be necessary to conduct other studies to determine detailed environmental and historical impacts. TDOT will perform all necessary studies including ecological and historical studies.

2.3 Traffic Served

The traffic volumes used in this study were approved by TDOT on April 14, 2011. A copy of the TDOT approval letter is contained in *Appendix A*. The following is a summary of the background information utilized in the development of these traffic volumes.

Traffic Volume Data Collection

24-hour traffic counts were obtained from TDOT within the study area. In addition, TDOT provided I-40 ramp counts for each of the twelve (12) entrance/exit ramps within the study area. Turning movement counts (TMC) were also collected at ramp terminal intersections. Truck percentages were provided by TDOT with the exception of the Megasite that was estimated to be 10%. The traffic volume data collected for this study is contained in *Appendix A*.

Historical Growth Rate Analyses

Historical traffic volumes were obtained from nine (9) traffic count stations within the project study area. Three (3) traffic count stations were located on I-40 and two (2) traffic count stations each were located at the three (3) study interchanges (Exit 35, Exit 42, and Exit 47). All of these traffic count stations are maintained by TDOT. A summary of the historical traffic volumes growth rates at these nine traffic count stations is shown in *Figure 2.6* and *Table 2.1*.

Figure 2.6 - TDOT Traffic Count Stations

Table 2.1 – Historical Traffic Volumes Growth Rate Summary

	Annual Average Daily Traffic (AADT)								
Year	I-40 Mainline		SR 59 Mainline (Exit 35)		S.R. 222 Mainline (Exit 42)		Dancyville Road Mainline (Exit 47)		
	CS#074	CS#063	CS#991	CS#004	CS#110	CS#088	CS#018	CS#053	CS#087
2010	26,834	26,502	35,613	2738	2695	581	689	459	890
2009	26,568	25,896	34,730	2350	2864	576	743	463	924
2008	26,798	26,580	33,339	2573	2593	573	662	426	886
2007	35,626	37,392	36,856	2779	2804	599	748	463	912
2006	34,253	33,295	36,960	3170	3137	593	692	450	956
2005	36,566	33,382	35,983	2805	2725	644	749	404	972
2004	30,448	31,721	33,168	2494	3070	626	720	396	964
2003	33,943	31,501	31,462	2482	2960	601	686	355	899
2002	30,670	33,972	31,213	2229	4372	536	702	426	956
2001	36,234	34,958	32,109	2209	3137	518	909	433	937
2000	34,030	31,810	31,730	2875		545	632	420	853
10-Year Average Growth Rate	-0.85%	-0.92%	2.37%	2.17%	1.80%	0.69%	1.07%	2.56%	0.13%
2-Year Average Growth Rate	-0.15%	0.07%	2.71%	2.86%	1.75%	0.67%	1.80%	3.20%	0.22%

As shown in *Table 2.1*, the traffic volumes on the I-40 mainline experienced an overall 20%± reduction between 2007 and 2008. Since 2008, the I-40 traffic volumes have increased at a slow to moderate growth rate. As a result, the historical traffic volumes were analyzed for both a ten (10) year period (2000-2010) and for a two (2) year period (2008-2010). The overall average growth rate for both analyses was calculated using simple linear regression procedures. Relying on engineering judgment and being conservative, it was decided to only use CS#991 for the I-40 mainline growth rate calculations since negligible growth had occurred at the other two (2) traffic count stations and both of these traffic count stations had experienced a greater reduction in traffic since 2008 when compared against CS#991. The final growth rate for each mainline was determined by combining the 2-year (2008-2010) and the 10-year (2000-2010) growth rates, giving two-thirds weight to the 2-year growth rate and one-third weight to the 10-year growth rate. In addition, the final growth rate for each of the side roads (i.e. S.R. 59, S.R. 222, and Dancyville Road) was adjusted to 2.00% if the growth rate was calculated below 2.00%.

The following are the final calculated growth rates for each mainline utilized in this study:

I-40: 2.60%
SR 59 (Exit 35): 2.19%
S.R. 222 (Exit 42): 2.00%
Dancyville Road (Exit 47): 2.00%

Horizon Years and Time Periods Analyzed

The horizon years were determined to be 2014 and 2034. For both horizon years, the time periods analyzed were AM and PM Design Hour Volumes (DHV) and Annual Average Daily Traffic (AADT).

Traffic Volume Projections

Traffic volumes were projected using the previously described growth rates within the project study area for the horizon years 2014 and 2034 and for each time period AM and PM DHV and AADT. A truck stop, Pilot Travel Center, is located on S.R. 222 (Exit 42) in the southeast quadrant of the I-40/S.R. 222 interchange. This place of business attracts heavy truck volumes not indicative of the other sections along S.R. 222. In order to reduce the interchange traffic volumes down to the S.R. 222 traffic volumes southeast of the Pilot Travel Center, the S.R. 222 intersection with the Pilot Travel Center has been included in the traffic volume projections.

Megasite and Other Assumed Developments

In addition to the traffic volume projections developed for horizon years 2014 and 2034, trips were generated for the megasite and other assumed developments. The number of trips was estimated using the Institute of Transportation Engineer's (ITE) Trip Generation Manual, 7th Edition. The development build-out was assumed to be 2,000 full-time employees for the Industrial Park Land Use Type. In addition, the trips were increased to account for other assumed development around the I-40/S.R. 222 interchange which included four (4) fast food restaurants and two (2) convenience markets with gas pumps. Overall, a total of 17,708 trips were estimated for the Megasite development build-out. **Table 2.2** summarizes the trips generated for each land use.

Table 2.2 – Estimated Development Build-Out Trips

Land Use Description		Industrial Park	Convenience Markets with Gas Pumps	Fast Food Restaurant with Drive Thru
ITE Code		130	853	934
Developme	nt Size (Each)	2000 Employees	3,000 Gross SF	3,000 Gross SF
Number of	Developments	1	2	4
Daily	Average Rate	3.34/Employee (50% In - 50% Out)	845.60/KSF (50% In - 50% Out)	496.12/KSF (50% In - 50% Out)
	Total Estimated Trips	6,680	5,074	5,954
AM Peak Hour	Average Rate	0.47/Employee (86% In - 14% Out)	45.58/KSF (50% In - 50% Out)	53.11/KSF (51% In - 49% Out)
A G H	Total Estimated Trips	940	274	638
PM Peak Hour	Average Rate	0.46/Employee (20% In - 80% Out)	60.61/KSF (50% In - 50% Out)	34.64/KSF (52% In - 48% Out)
	Total Estimated Trips	920	364	416

The trip distribution percentages are contained in *Appendix A* along with the development trip assignments for time period analyzed. To be conservative and a worst-case scenario, internal capture and pass-by reductions were not included in the above trip totals in the trip assignments.

Traffic Volume Diagrams

Traffic volume diagrams were prepared for I-40 between Exit 35 and Exit 47 and approved by TDOT on April 14, 2011. These traffic volume diagrams include the AM DHV, the PM DHV and the AADT for the horizon years 2014 and 2034. The traffic volumes include the calculated traffic volume projections and the total generated trips from full build-out of the Megasite and other assumed developments. The traffic volume diagrams are contained in *Appendix A*.

2.4 Discussion of Interchange Concepts

During the course of this study, a total of six (6) build interchange concepts were developed for evaluation. In addition, a no-build alternative was evaluated to determine the transportation impacts if no construction improvements are made to the study interchange. The following is a summary of the study concepts considered and evaluated include:

Table 2.3 – Description of Interchange Concepts

Concept No.	Description
Concept 1	Partial Traditional Diamond Interchange located to the east of the existing interchange.
Concept 2	Traditional Diamond Interchange located to the east of the existing interchange.
Concept 3	Diverging Diamond Interchange located to the east of the existing interchange.
Concept 4	Traditional Diamond Interchange located at the existing interchange.
Concept 5	Combined Traditional/Tight Diamond Interchange located at the existing interchange.
Concept 6	Traditional Diamond Interchange located to the west of the existing interchange.
-	No-Build Alternative

Cost estimates were prepared for the construction of all six (6) concepts. These cost estimates include the costs to construct a new S.R. 222 bridge over I-40 and the required modifications to S.R. 222 such as providing connections back to S.R. 222 on both the north and south sides of I-40. Concept figures and cost estimates including the breakdown details for the six (6) concepts are contained in *Appendix B* and *Appendix C*, respectively. All concept figures provide full interchange access for all traffic movements and show connections to public roads. The following is a description of these six (6) interchange concepts and the No-Build Alternative:

Concept 1 – Partial Traditional Diamond Interchange East of the Existing Interchange

This concept consists of constructing a new S.R. 222 bridge, perpendicular to I-40, approximately 500 feet east of the existing S.R. 222 bridge structure. A five (5) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction and a center left turn lane in each direction. An I-40 eastbound loop ramp is located in the southeast quadrant of the interchange for traffic heading north on S.R. 222 and an I-40 eastbound right turn ramp is located in the southwest quadrant of the interchange for traffic heading south on S.R. 222. The S.R. 222 improvements extend approximately 1,100 feet north from the northern ramp terminal intersection and 2,500 feet south from the southern ramp terminal intersection.

The loop ramp provides for improved access to the north side of the interchange for vehicular movements from the west. This is a critical movement for goods and supplies if the Megasite ntial Megasite development. This loop provides separation from other off-ramp movements and eliminates the need for signalization at this ramp terminal. Because of the loop ramp, the I-40 eastbound exit traffic movement will utilize a split along the exit ramp for the north/south direction. The will require an overhead sign truss and two (2) large guide signs that are not included in any of the other concepts.

On the north side of I-40, a field drive would be connected to Thorpe Drive since it is located within the proposed controlled access limits. On the south side of I-40, a separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other nearby destinations. The existing wastewater treatment facility would be relocated with this concept or an alternative system provided. The estimated cost for Concept 1 is \$13.1 million.

Concept 2 – Traditional Diamond Interchange East of the Existing Interchange

This concept is similar to Concept 1 with the exception of eliminating the I-40 eastbound loop ramp located in the southeast quadrant of the interchange. As a result, this I-40 eastbound traffic movement must turn left via a signalized intersection in order to head north on S.R. 222. Similar to Concept 1, the existing wastewater treatment facility would need to be relocated or an alternative system provided. The estimated cost for Concept 2 is \$12.2 million.

Concept 3 – Diverging Diamond Interchange East of the Existing Interchange

This diverging diamond concept consists of constructing a new S.R. 222 bridge perpendicular to I-40 approximately 500 feet east of the existing S.R. 222 bridge structure. A four (4) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction separated by barrier. The left turn and right turn movements from both eastbound and westbound ramps consist of two (2) lanes each. The design of the Thorpe Drive intersection is similar to a divided highway intersection because S.R. 222 is divided through this location.

The design speed on S.R. 222 within the vicinity of the I-40 bridge area is reduced to twenty-five (25) miles per hour (mph). This speed restriction could be increased to thirty (30) mph by increasing the right-of-way impacts.

The S.R. 222 improvements extend approximately 1,200 feet north from the northern ramp terminal intersection and 2,500 feet south from the southern ramp terminal intersection. On the north side of I-40, a field drive would be connected to Thorpe Drive since it is located within the proposed controlled access limits. On the south side of I-40, a separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other nearby destinations.

Similar to Concepts 1 and 2, the existing wastewater treatment facility would be relocated with this concept or an alternative system provided. The total estimated cost for Concept 3 is \$13.4 million.

<u>Concept 4 – Traditional Diamond Interchange</u>

This concept consists of rebuilding the S.R. 222 bridge at the same location on the same skew angle. Similar to Concept 1, a five (5) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction and a center left turn lane in each direction. The west side of S.R. 222 remains on the existing location due to the church and cemetery located on the south side of I-40 and all of the widening is along the east side of S.R. 222. Therefore, a separate roadway connection is provided from the existing S.R. 222 roadway for access to the Pilot Travel Center and other destinations on the south side of I-40. The existing businesses along the east side of S.R. 222 and their access to S.R. 222 would be greatly impacted and limited due to the construction of the separate roadway connection. These additional access challenges will require more direct negotiations with the Pilot Station and Deerfield Inn properties.

This concept also includes the widening S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange. This concept does not eliminate the existing access connections along the west side of S.R. 222 (south side of I-40) currently within the controlled access limits. The S.R. 222 improvements extend approximately 700 feet north from the northern ramp terminal intersection and 1,800 feet south from the southern ramp terminal intersection. On the north side of I-40, a field drive would be connected to Thorpe Drive since it is located within the proposed controlled access limits. Since the proposed bridge is located at the same location of the existing bridge and being constructed under traffic, the estimated costs for the bridge structure include a 25% contingency. The total estimated cost for Concept 4 is \$13.8 million.

Concept 5 – Combined Traditional/Tight Diamond Interchange

This concept is similar to Concept 4 with two (2) exceptions: 1) the I-40 eastbound interchange ramp terminal intersection is relocated approximately 150 feet closer towards I-40, and 2) the separate roadway connection providing access to the Pilot Travel Center and other destinations on the south side of I-40 is eliminated. Overall, the I-40 westbound interchange ramp terminal intersection functions as a Traditional Diamond Interchange and the I-40 eastbound interchange ramp terminal intersection functions as a Tight Diamond Interchange. As with Concept 4, the west side of S.R. 222 remains on the existing location due to the church and cemetery located on the south side of I-40 and all of the widening is along the east side of S.R. 222. Similar to Concept 4, the S.R. 222 widening will create additional access challenges and will require more direct negotiations with the Pilot Station and Deerfield Inn properties.

In order to eliminate all access driveways within the controlled access limits, the first (or closest) driveway from I-40 to the Exxon gas station/convenience store is closed and the Deerfield Inn driveway is relocated approximately fifty (50) feet southward. The Exxon gas

station/convenience store has a third driveway that has been temporarily closed with bollards. The removal of these bollards would provide for a second driveway replacing the closed driveway.

This concept also includes widening S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange. A lane add/drop situation occurs at the Hebron Road intersection, thus creating the four-lane typical section northward on S.R. 222. These S.R. 222 improvements reduce the construction impacts on S.R. 222 south of I-40 to approximately 1,400 feet south from the southern ramp terminal intersection. On the north side of I-40, a field drive would be constructed to Thorpe Drive since it is located within the proposed controlled access limits. Similar to Concept 4, the estimated costs for the bridge structure include a 25% contingency since the proposed bridge is located at the same location of the existing bridge and being constructed under traffic. The total estimated cost for Concept 5 is \$13.2 million.

Concept 6 – Traditional Diamond Interchange West of the Existing Interchange

This concept consists of constructing a new S.R. 222 bridge perpendicular to I-40, but approximately 1,500 feet west of the existing S.R. 222 bridge structure. The proposed S.R. 222 bridge over I-40 was relocated approximately 1,500 feet west of S.R. 222 in order to avoid the existing cemetery and keep the residential impacts to a minimum. Similar to most of the previous concepts, a five (5) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction and a center left turn lane in each direction.

The horizontal and vertical alignment geometry would be of concern as a result of the number of turns along the proposed route. The S.R. 222 improvements extend approximately 2,300 feet north from the northern ramp terminal intersection and 2,000 feet south from the southern ramp terminal intersection. On the south side of I-40, a separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other nearby destinations. The total estimated cost for Concept 6 is \$11.9 million.

No-Build Alternative

No construction improvements are made to the study interchange. The no-build alternative is being considered as an option if the Megasite is not developed. However, if the Megasite is developed, then the interchange will require the upgrade improvements previously described in Concepts 1-6.

Other Options Considered during the Planning Process

Two other options were considered during the planning process that focused on improving the existing S.R. 222 bridge and also providing direct access to the Megasite area. The following are brief descriptions of two (2) of these options:

Combination Interchange Option (with Shared Frontage Road between Interchanges):

This option, shown in *Figure 2.7*, consists of constructing a new trumpet interchange approximately two-thirds (%) mile west of the existing S.R. 222 interchange in conjunction with Concept 1. With this option, an assumption was made to assign 50% of the development traffic to the new trumpet interchange. As a result of the reduced traffic volume on S.R. 222, a three (3) lane section for S.R. 222 is shown with this option. A separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other destinations on the south side of I-40. This option also consists of constructing auxiliary lanes (barrier separated) to link ramp movements between the new trumpet interchange and the ramps for the new S.R. 222 diamond interchange. The frontage

road weave distance between interchanges is 1500 feet (EB) and 2200 feet (WB). Because of the concern regarding the development of the Megasite, plus the extent of construction impacts and the weaving area impacts between interchanges, this option was eliminated from consideration.

Figure 2.7 – Combination Interchange Option (with Shared Frontage Road)

Combination Interchange Option (with Separate Frontage Roads between Interchanges):

This option, shown in *Figure 2.8*, is similar to the other option with the exception that the new trumpet interchange is located approximately one-half (½) mile west of the existing S.R. 222 interchange and the on/off ramp movements from each interchange are grade separated at the location where the two (2) ramps intersect. This option was eliminated from considerations for the same reasons previously listed in the other option.

Figure 2.8 – Combination Interchange Option (with Separate Frontage Roads)

3.0 ENGINEERING INVESTIGATION

3.1 Traffic Operations

Analysis was made to determine the potential impacts of proposed concept modifications to the existing interchange and the effect these changes may have on the Interstate system.

The capacity of a facility is defined in the Highway Capacity Manual (HCM) as the maximum hourly rate at which vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions. Any change in these conditions will result in a change in the capacity of a facility.

The analysis of highway capacity is a set of procedures used to estimate the traffic-carrying ability of facilities over a range of defined operational conditions known as level-of-service (LOS). LOS is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A LOS definition generally describes these operational conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. *Table 3.1* presents general descriptions for each LOS.

Table 3.1 – Level-of-Service (LOS) Description

LOS	Level-of-Service (LOS) Description
А	Free Flow operations. Vehicles are almost completely unimpeded in their ability to maneuver within the traffic stream. The general level of physical and psychological comfort provided the driver is high.
В	Reasonably free flow operations. The ability to maneuver within the traffic stream is only slightly restricted and the general level of physical and psychological comfort provided to the driver is high.
С	Flow with speeds at or near free flow. Freedom to maneuver within the traffic stream is noticeably restricted and lane changes require more vigilance on the part of the driver. The driver notices an increase in tension because of additional vigilance required for safe operation.
D	Speeds decline with increasing traffic. Freedom to maneuver within the traffic stream is noticeably limited. The driver experiences reduced physical and psychological comfort levels.
E	At the lower boundary, the facility is at capacity. Operations are volatile because there are virtually no gaps in the traffic stream. There is little or no room to maneuver. The driver experiences poor levels of physical and psychological comfort.
F	Breakdowns in traffic flow. The number of vehicles entering the highway section exceeds the capacity, or ability of the highway to accommodate that number of vehicles. There is little or no room to maneuver. The driver experiences poor levels of physical and psychological comfort.

Source: Highway Capacity Manual (2000), Transportation Research Board

The <u>Highway Capacity Software</u> (HCS) was used to obtain the capacity analysis LOS results presented in this study for different facility types: Basic Freeway Segments, Freeway Ramp Merges, Freeway Ramp Diverges, Multi-Lane Highways, Two-Lane Highways, Signalized Intersections, and Unsignalized Intersections. The HCS printouts for all of the capacity analyses can be found in *Appendix C* of this report.

<u>Traffic Volumes</u>
The project study area Annual Average Daily Traffic (AADT) Volumes and the Design Hour Volumes (DHV) for the horizon years 2014 and 2034 are shown in *Table 3.2*.

Table 3.2 – Traffic Volumes (Two-Way) and Truck Percentages

Type	Lagation	Sammant	Traffic \	Truck	
Туре	Location	Segment	2014	2034	Pct.
		West of Exit 35	44,420	62,340	35%
	I-40	Exit 35 to Exit 42	43,610	60,510	35%
	1-40	Exit 42 to Exit 47	38,820	55,560	35%
		East of Exit 47	36,850	53,510	35%
	S.R. 59	North of I-40	4290	5780	3%
AADT	(Exit 35)	South of I-40	4440	5990	3%
	0.000	North of I-40	14,490	15,960	10%
	S.R. 222 (Exit 42)	I-40 to PTC ¹	13,220	16,250	48%
	(LAIL 42)	South of PTC ¹	4940	6450	3%
	Dancyville Road	North of I-40	1700	2040	2%
	(Éxit 47)	South of I-40	2530	3230	2%
		West of Exit 35	4256	5992	
	1.40	Exit 35 to Exit 42	4125	5706	
	I-40	Exit 42 to Exit 47	3629	5194	
		East of Exit 47	3396	4937	
51.07	S.R. 59 (Exit 35)	North of I-40	404	555	
DHV AM Peak Period		South of I-40	417	575	
AWFEARFEIIOU	S.R. 222 (Exit 42)	North of I-40	1485	1503	
		I-40 to PTC ¹	673	791	
		South of PTC ¹	462	544	
	Dancyville Road	North of I-40	199	250	
	(Éxit 47)	South of I-40	206	263	
		West of Exit 35	4353	6133	
	I-40	Exit 35 to Exit 42	4275	5935	
	1-40	Exit 42 to Exit 47	3845	5503	
		East of Exit 47	3652	5298	
-	S.R. 59	North of I-40	384	531	
DHV PM Peak Period	(Exit 35)	South of I-40	398	549	
I WIFEAR FEIIUU	0.0	North of I-40	1327	1343	
	S.R. 222 (Exit 42)	I-40 to PTC ¹	667	815	
	(LAIL 42)	South of PTC ¹	400	500	
	Dancyville Road	North of I-40	169	210	
	(Éxit 47)	South of I-40	212	273	

^{1.} PTC is Pilot Travel Center.

<u>I-40 Mainline Capacity Analyses</u>
The project study area I-40 mainline capacity analysis results for the horizon years 2014 and 2034 are shown in *Table 3.3*.

Table 3.3 – I-40 Mainline Capacity Analysis Results (Existing Conditions)

Location	Direction	Peak Period	2014	2034
	EB	AM	С	D
West of	ED	PM	С	D
Exit 35 (S.R. 59)	WB	AM	С	D
	VVD	PM	С	D
	ED	AM	С	D
Exit 35 (S.R. 59)	EB	PM	С	D
to Exit 42 (S.R. 222)	WB	AM	В	С
		PM	С	D
F : 40 (0 F 000)	EB	AM	В	С
Exit 42 (S.R. 222) to		PM	С	D
Exit 47 (Dancyville Rd.)	WD	AM	В	С
(Dancyville Rd.)	WB	PM	С	D
	EB	AM	В	С
East of Exit 47	ED	PM	В	С
(Dancyville Rd.)	WB	AM	В	С
,	VVD	PM	В	С

<u>I-40 Merge and Diverge Ramp Capacity Analyses</u> The I-40 merge/diverge ramp capacity analysis results are shown in *Table 3.4*.

Table 3.4 – I-40 Merge and Diverge Ramps Capacity Analysis Results (Existing Conditions)

Location	Direction	Peak Period	2014	2034			
MERGE RAMPS							
	ED Entrance Domn	AM	С	D			
I-40 at	EB Entrance Ramp	PM	С	D			
Exit 35 (S.R. 59)	WB Entrance Ramp	AM	С	D			
	WB Entrance Kamp	PM	С	E			
	EB Entrance Ramp	AM	С	D			
I-40 at	EB Elitiance Kamp	PM	С	D			
Exit 42 (S.R. 222)	WB Entrance Ramp	AM	С	D			
	WB Entrance Kamp	PM	D	E			
	ED Entrance Romp	AM	В	С			
I-40 at	EB Entrance Ramp	PM	С	D			
Exit 47 (Dancyville Rd.)	WP Entrance Pomp	AM	С	D			
	WB Entrance Ramp	PM	С	D			
	DIVERGE	RAMPS					
	ED Evit Bomp	AM	С	D			
I-40 at	EB Exit Ramp	PM	В	С			
Exit 35 (S.R. 59)	WB Exit Ramp	AM	В	С			
	WB EXIL Kamp	PM	С	D			
	ED Evit Bomp	AM	В	С			
I-40 at	EB Exit Ramp	PM	В	С			
Exit 42 (S.R. 222)	MR Evit Roma	AM	В	С			
	WB Exit Ramp	PM	В	С			
	ER Evit Domo	AM	В	С			
I-40 at	EB Exit Ramp	PM	В	С			
Exit 47 (Dancyville Rd.)	WB Exit Ramp	AM	В	С			
	ייים באני המוווף	PM	В	С			

I-40 Interchange Crossroads Mainline Capacity Analyses

The project study area I-40 interchange crossroads mainline capacity analysis results for the horizon years 2014 and 2034 are shown in *Table 3.5*.

Table 3.5 – I-40 Interchange Crossroads Mainline Capacity Analysis Results (Existing Conditions)

Crossroad	Location	Direction	Peak Period	2014	2034
S.R. 59	North of I-40	Two-Way	AM	С	С
(Exit 35)	1101111 01 1-40	TWO-VVay	PM	В	С
[Note: Two-Lane Analyses]	South of I-40	Two Mov	AM	С	С
	South of 1-40	Two-Way	PM	С	С
	North of I-40	Two-Way	AM	D	D
S.R. 222	NOITH OF 1-40	i wo-vvay	PM	D	D
(Exit 42)	I-40 to PTC ¹	Two Mov	AM	С	С
[Note: Two-Lane	1-40 10 PTC	Two-Way	PM	С	С
Analyses]	South of PTC ¹	Tura Mari	AM	С	С
	South of PTC	Two-Way	PM	В	С
		NB	AM	В	В
	North of I-40		PM	А	А
		O.D.	AM	А	А
		SB	PM	Α	А
S.R. 222	I-40 to PTC ¹	NB	AM	Α	А
(Exit 42)			PM	А	А
[Note: Multilane		CD	AM	А	А
Analyses]		SB	PM	Α	А
		ND	AM	Α	А
	Carrie of DTC1	NB	PM	Α	А
	South of PTC ¹	0.0	AM	А	А
		SB	PM	А	А
Dancyville Road	North of LAC	T	AM	В	В
(Exit 47)	North of I-40	Two-Way	PM	А	В
[Note: Two-Lane	0	T \ \ \ / \	AM	В	В
Analyses]	South of I-40	Two-Way	PM	В	В

^{1.} PTC is Pilot Travel Center.

^{2.} The multilane capacity analysis results are shown by direction (NB/SB).

Ramp Terminal Intersections

The project study area ramp terminal intersection capacity analysis results were conducted for the horizon years 2014 and 2034. The SR 59 (Exit 35) and the Dancyville Road (Exit 47) intersection capacity analysis results are shown in *Table 3.6*.

Table 3.6 – S.R. 59 (Exit 35) and the Dancyville Road (Exit 47) Ramp Terminal Intersections Capacity Analysis Results (Existing Conditions)

ıtion	Ammanah	Peak	S.R. 59 (Exit 35) ¹	Dancyville Ro	oad (Exit 47) ¹
Location	Approach	Period	2014	2034	2014	2034
	Overall	AM	N/A	N/A	N/A	N/A
	Overall	PM	IN/A	IN/A	IN/A	IN/A
ps ²	ND	AM	Α	Α	Α	Α
EB Ramps ²	NB	PM	Α	Α	Α	Α
EB	0.5	AM	Α	Α	Α	Α
I-40	SB	PM	Α	Α	Α	Α
	EB	AM	В	С	Α	В
		PM	В	С	Α	В
	Overall	AM	N/A	N/A	N/A	N/A
	Overall	PM	IN/A	IN/A	IN/A	
nps ³	NB	AM	Α	Α	Α	Α
Ran	IND	PM	Α	Α	Α	Α
I-40 WB Ramps ³	SB	AM	Α	А	Α	A
1-40	SD	PM	Α	А	Α	A
	WB	AM	В	С	В	В
	VVD	PM	В	С	В	В

^{1.} Unsignalized capacity analysis results.

The S.R. 222 (Exit 42) capacity analysis results for each concept are shown in *Table 3.7*. The proposed lanes for each concept are depicted graphically in *Appendix B*.

Table 3.7 – S.R. 222 (Exit 42) Ramp Terminal Intersections Capacity Analysis Results (Existing and Proposed Conditions)

	Approach and Movement		Peak Period	Interchange Types ¹								
Location				Proposed Conditions								
				Traditional Diamond				Diverging Diamond		No-Build Alternative		
				Concept 1 (Mod. for EB Loop Ramp)		Concepts 2, 4, 5, 6		Concept 3		(Existing Conditions)		
				2014	2034	2014	2034	2014	2034	2014	2034	
	Overall		AM	N/A	N/A	(B)	(B)	(B)	(B)	N/A	N/A	
I-40/S.R. 222 EB Off/On-Ramp			PM			(B)	(B)	(B)	(B)			
	Traffic Movement	NB Thru	AM	Α	А	(B)	(B)	(B)	(B)	Α	Α	
			PM	Α	Α	(B)	(B)	(B)	(B)	Α	Α	
		SB ²	AM	Α	А	(A)	(A)	(B)	(B)	Α	Α	
			PM	Α	Α	(A)	(A)	(B)	(B)	Α	Α	
		EB Left Turn	AM	N/A ⁴	N/A ⁴	(B)	(B)	(B)	(B)	F	F	
			PM		IN/A	(B)	(B)	(B)	(B)	F	F	
		EB Right Turn	AM	В	В	(B)	(B)	(B)	(B)	5	5	
			PM	Α	В	(B)	(C)	(B)	(B)			
	Overall		AM	(B)	(B)	(B)	(B)	(B)	(B)	N/A	N/A	
			PM	(B)	(B)	(B)	(B)	(B)	(B)			
	Traffic Movement	NB ³	AM	(A)	(A)	(A)	(A)	(B)	(C)	Α	Α	
I-40/S.R. 222 WB Off/On-Ramp			PM	(A)	(A)	(A)	(A)	(B)	(B)	В	В	
		SB Thru	AM	(B)	(B)	(B)	(B)	(B)	(B)	Α	Α	
			PM	(B)	(B)	(B)	(B)	(B)	(B)	Α	Α	
		WB Left Turn	AM	(B)	(B)	(B)	(B)	(B)	(B)	F	F	
			PM	(C)	(C)	(C)	(C)	(B)	(B)	F	F	
		WB Right Turn	AM	(C)	(C)	(C)	(C)	(B)	(B)	5	5	
			PM	(C)	(C)	(C)	(C)	(B)	(B)			

^{1.} The signalized capacity analysis results are shown in parentheses.

^{2.} The capacity analysis results shown represent the SB Left Turn Movement for the Traditional Diamond Interchange/No-Build concepts and the SB Thru Movement for the Diverging Diamond Interchange concept.

^{3.} The capacity analysis results shown represent the NB Left Turn Movement for the Traditional Diamond Interchange/No-Build concepts and the NB Thru Movement for the Diverging Diamond Interchange concept.

^{4.} The EB Left Turn Movement is free-flow utilizing a one-lane loop ramp to S.R. 222 NB.

^{5.} The EB Right Turn Movement is included in the EB Left Turn Movement (Shared Lane) for the No-Build concept.

As shown in *Table 3.7*, all of the concepts provide LOS C or better capacity results for all traffic movements with the exception of the No-Build Alternative which produced LOS F capacity results.

S.R. 222/Pilot Travel Center Intersection

The project study area intersection capacity analysis results for the S.R. 222/Pilot Travel Center intersection was conducted for the horizon years 2014 and 2034. These intersection capacity analysis results are shown in *Table 3.8*.

Table 3.8 – S.R. 222/Pilot Travel Center Intersection Capacity Analysis Results (Proposed Conditions)

Location	Approach Peak Period		2014 ¹	2034 ¹		
S.R. 222 at Pilot Travel Center	Overall	AM	N/A	N/A		
	Overall	PM	IV/A			
	NB	AM	Α	A		
	ND	PM	Α	A		
	SB	AM	Α	A		
		PM	Α	A		
	WD	AM	В	В		
	WB	PM	В	В		

^{1.} Unsignalized capacity analysis results.

3.2 Crash Analysis

The crash data used in this analysis was provided by TDOT and included reports from 2005 to 2007. A total of twenty-one (21) crashes were reported within the vicinity of the study interchange during this three (3) year period. Of these twenty-one (21) reported crashes, eight (8) occurred along I-40 and thirteen (13) occurred along S.R. 222. A summary of the I-40/S.R. 222 crash data is presented in *Table 3.9*.

As expected, the predominant types were right angle crashes (7) and rear end crashes (5). The overall severity damage totals included five (5) injury crashes with no incapacitating injury or fatal crashes.

^{2.} Existing geometry for the intersection: 1 NB Thru/Right Turn Shared Lane, 1 SB Left Turn/Thru Shared Lane, and 1 WB Left Turn/Right Turn Shared Lane.

Table 3.9 - I-40/S.R. 222 Crash Data Summary

Description	I-40			S.R. 222			T-1-1	Pct. of	
Description	2005	2006	2007	2005	2006	2007	Total	Total	
Rear End	1			2		2	5	23.8%	
Right Angle		1		1	1	4	7	33.3%	
Overturn			1				1	4.8%	
Struck Bridge Rail/Guardrail		2	1	1			4	19.0%	
Struck Other Object (Fixed)		1					1	4.8%	
Struck Animal in Road			1	1			2	9.5%	
Run off the Road				1			1	4.8%	
INVOLVEMENT									
All Vehicles	2	5	3	9	2	12	33		
ROAD SURFACE									
Dry (No Adverse Conditions)	1	2	2	5	1	4	15	71.5%	
Wet (Rain)			1	1		2	4	19.0%	
Snow / Ice		2					2	9.5%	
SEVERITY DAMAGE									
Property Damage Only		4	2	5	1	4	16	76.2%	
Injury Crashes (No Fatalities)	1		1	1		2	5	23.8%	
Incap. Injury Crashes (No Fatalities)							0	-	
Fatality Crashes							0	-	
Number of Injuries (All Crashes)	2		1	1		2	6		
Number of Fatalities (All Crashes)							0		
CRASH SUMMARY									
Total Crashes	1	4	3	6	1	6	21	100%	
Percentage of Total	4.8%	19.0%	14.3%	28.6%	4.8%	28.6%			

3.3 S.R. 222 Bridge Inspection Report

The latest bridge inspection report was conducted on December 14, 2010. During this inspection, the overall condition of the study bridge was determined to be "Fair" and having a sufficiency rating of 63.2. Repairs to correct previously identified deficiencies to the bridge structure and the bridge rails were made in 2008.

3.4 Wastewater Treatment Facility

An existing wastewater treatment facility is located in the southeast quadrant of the I-40 at S.R. 222 interchange adjacent to the Deerfield Inn. This facility is owned by the Pilot Travel Center and serves both the Pilot Travel Center and the Deerfield Inn. This treatment facility consists of a series of septic tanks with sand filters, discharging to a pond adjacent to the right of way for I-40.

Concepts 1, 2, and 3 will require the relocation of this wastewater treatment facility. An area adjacent to the present location is available and noted on each of these three (3) concept figures contained in *Appendix B*. A representative of the Tennessee Department of Environment and Conservation (TDEC) stated that due to heavy vegetation around the pond and since there is no history of noted problems at this location, the facility is apparently functioning very efficiently and could be relocated with no anticipated problems. If a wastewater treatment system cannot be provided, a worst-case scenario of approximately \$7.0 million has been estimated by TDOT for the acquisition of two businesses (Pilot Travel Center and Deerfield Inn). However, this worst-case scenario should not be an issue and should be resolved in design especially with all of the various technologies available.

3.5 Interchange Concept Evaluation Summary

During the course of the study, the six (6) interchange concepts along with the No-Build Alternative, described in **Section 2.4**, were discussed with TDOT, FHWA, and the ECD. The design criteria considered included, but was not limited to, sight distance at ramp terminals, sufficient storage on the ramps, vertical clearance, pedestrian access through the interchange, length of acceleration/deceleration lanes, length of tapers, spacing between ramps, lane continuity, lane balance, and uniformity in interchange design and operational patterns. Through these discussions, two (2) concepts were determined to be viable while the four (4) others were removed from further consideration for a variety of reasons. A summary of these concepts are included in the following paragraphs.

Viable Concepts

Concepts 1 and 5, shown in *Figures 3.1 and 3.2* respectively, were determined viable for this study.

Concept 1 satisfies the travel demands of the interchange especially since the major traffic movement within the interchange (I-40 eastbound to S.R. 222 northbound) would be free-flow via a single lane loop ramp, as compared to Concept 2 that requires the signalization of this traffic movement. The total estimated cost for Concept 1 is \$13.1 million.

Concept 5 satisfies the 300 feet of controlled access limits for this interchange and does not include a separate frontage road paralleling S.R. 222, as compared to Concept 4. On the south side of the interchange, direct access to businesses south of I-40 is maintained in Concept 5, but two (2) existing driveways are affected along S.R. 222. These driveways include the closure of the first (or closest) driveway from I-40 to the Exxon gas station/convenience store along the west side of S.R. 222 and the relocation of the Deerfield Inn driveway approximately fifty (50) feet southward along the east side of S.R. 222. Even though this concept includes the widening of S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange, all of the widening impacts are on the east side of S.R. 222 resulting in no construction impacts to the church/cemetery site. The total estimated cost for Concept 5 is \$13.2 million.

The No-Build Alternative was determined viable if the Megasite is not developed. If the Megasite is developed, then the No-Build Alternative is a non-viable concept because the capacity of the existing interchange will not be satisfied (LOS F conditions) in the future 2034 design year.

Between the viable construction concepts, TDOT and ECD both prefer Concept 1 since the I-40 eastbound to S.R. 222 northbound traffic movement would be free-flow via a single lane loop ramp and removed from signalization as required with Concept 5. This traffic movement is the highest turning movement within the interchange totaling 586 vehicles during the 2034 morning peak period.

Non-Viable Concepts

Concept 2 (Traditional Diamond Interchange East of the Existing Interchange) was determined not viable and eliminated because the I-40 eastbound to S.R. 222 northbound traffic movement within the interchange must travel through a signalized intersection at the ramp terminal instead of the single lane free-flow loop ramp provided in Concept 1. This is the highest traffic movement within the study interchange and since it will be controlled through signalization in this concept, it would contain vehicular delays for this movement that would not be present in Concept 1. Safety considerations of this traffic driving through a signalized intersection vs. free-flow were also considered during the elimination process. As a result, this concept was removed from further consideration.

Concept 3 (Diverging Diamond Interchange East of the Existing Interchange) was determined not viable because the traffic patterns do not provide a good fit for a diverging diamond footprint, especially with both of the S.R. 222 left turn traffic volumes being less than 226 vehicles during the 2034 morning and afternoon peak periods. The major traffic movement is the I-40 eastbound to S.R. 222 northbound which would require signalization similar to Concept 2. The motorists speed would require being reduced through their navigation within the interchange. As a result, this concept was removed from further consideration.

Concept 4 (Traditional Diamond Interchange) was determined not viable because the 300 feet of controlled access limits for this interchange could not be achieved. On the south side of the interchange, direct access to businesses south of I-40 is maintained in Concept 4, but the 300 feet of controlled access limits for this interchange cannot be achieved along the west side of S.R. 222 south of the interchange. In order to meet the 300 feet of controlled access limits along the east side of S.R. 222 south of the interchange, a frontage road was developed that parallels S.R. 222 and intersects S.R. 222 about 400 feet south of Hebron Road. This frontage road requires the acquisition of right-of-way along the Pilot Travel Center property adjacent to S.R. 222 which includes business impacts such as parking and truck maneuverability within the site. This interchange concept is the same as Concept 5 with the exception that in Concept 5, the 300 feet of controlled access limits can be achieved with the relocation of the eastbound ramps closer to I-40 in conjunction with the closure/relocation of two (2) existing driveways. As a result, this concept was removed from further consideration.

Concept 6 (Traditional Diamond Interchange West of the Existing Interchange) was determined not viable. The main reason is that the horizontal and vertical alignment geometry would be of concern as a result of the number of turns required along the proposed route. As a result, this concept was removed from further consideration.

3.6 Access Analysis (FHWA Eight Policy Points)

This study is undertaken in accordance with the Federal Highway Administration's (FHWA) eight policy points as outlined in the document entitled "Interstate System Access Informational Guide". These eight policy points address the appropriate issues and provide the information necessary to allow the FHWA to make an informed decision considering the potential consequences of a change in access. The eight (8) policy points are listed below in bulleted italics, followed by the response as analyzed for this location.

1. The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).

The request for upgrading the study interchange was initiated by the Tennessee Department of Economic and Community Development (ECD) on behalf of the Tennessee Valley Authority (TVA). The proposed improvements for the study interchange are essential to the development of the Megasite located on the north side of I-40 within the study area. The expected increases in both population and development activity related to the Megasite will reduce the traffic operating conditions to LOS F with the current interchange configuration (i.e. No-Build Alternative). It is crucial for this development of regional significance that a modified and improved interchange access be considered to preserve efficient traffic operations in the region. The current adjacent interchanges are too far way (approximately five (5) and seven (7) miles to the adjacent interchanges) to accommodate development traffic and the local routes by themselves will not accommodate the travel patterns, nor be the preferred routes, for the employment base, suppliers, and distributors.

During the latest bridge inspection, the overall condition of the study bridge was determined to be rated as fair with a sufficiency rating of 63.2. TDOT Structures Division has determined that the existing bridge consists of four (4) spans and is not a candidate for retrofit and needs to be replaced for the following reasons:

- Any new bridge would be a two (2) span structure for the safety of motorists travelling on I-40.
- A two (2) span structure would accommodate any future widening of I-40 without additional bridge modifications.
- The cost of widening the existing structure to accommodate the required travel lanes plus full shoulders would be greater than the cost of replacing the entire structure.

The ECD has agreed to provide 100% of the funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements. Even though there are no confirmed developments for the Megasite, the ECD envisions that all of the paperwork including construction design documents be completed and are shovel-ready projects when a tenant for the Megasite is identified so that the roadway improvements can be in place in conjunction with the opening of the Megasite.

If the Megasite is developed, the Megasite will serve a regional need with primary access from I-40 via the Exit 42 interchange. All proposed improvements currently identified in the State/Regional Long Range Transportation Plan (LRTP) have been included in this study. In

conjunction with the development of the Megasite, additional improvements to S.R. 222 will be recommended to the north of the interchange study limits.

2. The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access. The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).

This study area covered a sufficient area to allow for the evaluation of different types of interchange configurations such as a traditional diamond, a modified traditional diamond containing a loop ramp in one quadrant, a combined traditional/tight diamond, and a diverging diamond. In addition, this study included the evaluation of different intersection configurations such as stop control, signal control, and free right turns. The No-Build Alternative was also included in the analyses.

The location of the study interchange for the two (2) viable concepts is the best location as it is at or in extremely close proximity to the existing interchange location. The proposed improvements do not include pedestrian and bicycle accommodations at this time since such facilities are not currently provided along the existing S.R. 222 roadway system nor typical in this rural area.

Safety issues related to the existing interchange cannot be addressed through Transportation Systems Management (TSM) strategies. There is no mass transit service in the area of the interchange. HOV facilities are not available or planned along the I-40 mainline study area. The widening of I-40 to six (6) lanes may be constructed by the 2034 planning horizon. Even with the addition of I-40 mainline lanes, the functionality of the existing study interchange will be deficient without the proposed improvements.

3. An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

The 2014 and 2034 design traffic volumes analyzed in this study were approved by TDOT and a copy of the approval letter is contained in *Appendix A*. The capacity analyses conducted in this study utilized Highway Capacity Manual procedures and included the following facility types: Basic Freeway Segments, Freeway Ramp Merges, Freeway Ramp Diverges, Multi-Lane Highways, Two-Lane Highways, Signalized Intersections, and Unsignalized Intersections. The capacity analyses included the Pilot Travel Center intersection with S.R.222 because of the high percentage of trucks (48%) utilizing this facility. Results of the capacity analyses presented in *Section 3.1* indicate that no significant traffic operational issues are expected with construction improvements of the viable concepts (Concepts 1 and 5). The No-Build Alternative indicates that if no improvements are made to the study interchange, then LOS F traffic conditions will be expected if the Megasite is developed. All of the proposed improvements for each concept satisfactorily accommodate the 2014 and 2034 design traffic volumes. The results from the capacity analyses are summarized in *Tables 3.3 to 3.8*.

For the two (2) viable concepts, the proposed access point is either relocated approximately 500 feet eastward on I-40 (Concept 1) or at the same location (Concept 5). The adjacent I-40 interchanges, Exit 35 (S.R. 59) and Exit 47 (Dancyville Road), are approximately seven (7) miles to the west and five (5) miles to the east along I-40.

In addition, a proposed interchange discussed in **Section 1.4** is located between the study interchange and Exit 47 (Dancyville Road) approximately 1.1 miles east of the study interchange. As a result of this distance, the existing adjacent interchanges, as they relate to this proposed interchange, are outside the influence of traffic weaving conditions along I-40.

The proposed interchange access provides connections to S.R. 222 and other public roads in the vicinity of the interchange such as Hebron Road and Thorpe Drive and will not require upgrading of those facilities. The proximity of both Hebron Road and Thorpe Drive do not contribute to any safety and operational problems associated with the study interchange. On both the north and south sides of the study interchange, the 300 feet of controlled access limits are satisfied for the two (2) viable concepts (Concepts 1 and 5).

The State Strategic Highway Safety Plan was used as a benchmark on safety for this study. However, as mentioned in Policy Point 2, the proposed improvements do not include pedestrian and bicycle accommodations because such facilities are not currently provided in the existing roadway system. In addition, a conceptual signing plan for Concepts 1 and 5 are contained in *Appendix B*. The conceptual signing plan for Concept 1 shows that the I-40 eastbound will require the use of A and B exits to distinguish between S.R. 222 northbound and southbound traffic movements.

4. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).

The existing study interchange currently serves, and the proposed improvements will provide for all traffic movements for full interchange access. The proposed improvements secure sufficient ROW by utilizing either available existing ROW or through the acquisition of proposed ROW. Concepts 1 and 5 require the approximate ROW acquisition of 25.5 acres and 2.2 acres, respectively.

As mentioned in Policy Point 3, the proposed interchange access provides connections to S.R. 222 and other public roads in the vicinity of the interchange such as Hebron Road and Thorpe Drive and meets and/or exceeds current design standards for the Interstate System. No design exceptions are anticipated with either Concept 1 or Concept 5. All traffic movements have been analyzed during the 2014 and 2034 design years for each concept and have been summarized in *Table 3.7*.

5. The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.

This study includes coordination with other projects as discussed in **Section 1.4**. and the proposed improvements are consistent and conform with applicable local, regional, and statewide land use and transportation plans. The study interchange is in the current 2012-14 TIP (TDOT Proposed Comprehensive Multimodal Program) funded for ROW in FY 2013.

The location of the study interchange is not within a Transportation Management Area (TMA) and is not within a non-attainment area for air quality. As mentioned in Policy Point 3, the proposed access point for the two (2) viable concepts is either relocated approximately 500 feet eastward on I-40 (Concept 1) or at the same location (Concept 5).

6. In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).

This study does not preclude or affect future access points along I-40 and the proposed improvements satisfy the future needs for the study interchange. However, if the Megasite is developed and the travel demand of the Megasite exceeds the capacity of these proposed interchange improvements, the potential construction of the new interchange near Mile Marker 45, shown in *Figure 1.5*, could be considered in the future.

7. When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).

This study was coordinated with the adjacent Megasite area because of its close proximity to the study interchange. *Table 2.2* summarizes the trips generated for the Megasite which were considered conservative and a worst-case scenario. The improvements recommended in this study interchange are integral to adequately accommodating projected traffic volumes and operations if the Megasite is developed.

As mentioned in Policy Point 3, the proposed improvements in this study are compatible and provide adequate tie-in connections to the existing street network. As discussed in **Section 1.4**, this study has been coordinated with the S.R. 222 Relocation & System Improvements Feasibility Study to ensure that the immediate and long-term needs of the study area will be met. In addition, if the potential interchange near Mile Marker 45 is constructed, a State Industrial Access (SIA) road to the Megasite will be necessary to access S.R. 222 on the north side of the study interchange as shown in **Figure 1.5**. The location of the SIA road will have no direct impacts to the operations of the study interchange because of their proposed distance apart from each other.

There are no pre-condition contingencies related to the adjacent projects that are required for this study. In addition, this study does not require financial or infrastructure commitments from other agencies, organizations, or private entities.

8. The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).

This study was developed in coordination with TDOT and documents the expected impacts and benefits from modifying the existing I-40 interchange at Exit 42 (S.R. 222). If the Megasite is developed and with the proposed modifications contained in this IMS report, the overall traffic operations at the study interchange can be adequately accommodated through the 20-year horizon year (2034).

As mentioned in Policy Point 5, this study is consistent with the current 2012-14 STIP (TDOT Proposed Comprehensive Multimodal Program) funded for ROW in FY 2013. The known environmental issues are provided in **Section 2.2**. When this study receives a finding of Operational and Engineering Acceptability, it will then be necessary to begin conducting additional environmental studies as outlined in the NEPA planning process.

The FHWA Prompt-List for Reviewing Interstate Access Requests for Concepts 1 and 5 are provided on the following pages.

Prompt List for Review of			
		Interstate System Access Change Requests	
Adequ		FHWA Interstate Access Policy Points	
Addressed? Yes No		1 11 W 11 interstate 11 eeess 1 oney 1 onits	
X	No	Policy Point 1: The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).	
X		Policy Point 2: The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).	
X		Policy Point 3: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).	
X		Policy Point 4: The proposed access connects to a public road only and will provide for all traffic movements. Less than ``full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).	
X		Policy Point 5: The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.	
X		Policy Point 6: In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).	
X		Policy Point 7: When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).	
X		Policy Point 8: The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).	

Policy Point 1: "The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a))."

Addressed		sed		
Ac	Adequately?		Question	Reference Location
Y	N	N/A		
X			Does the access request clearly describe the need and purpose of the proposal and identify project goals and objectives that are specific and measurable?	Sect. 1.2 and 3.6 (PP1)
X			Is the proposal in the best interest of the public, or does it merely serve a narrow interest?	Sect. 1.2 (P1) and 3.6 (PP1)
X			Is the proposal serving a regional transportation need, or is it merely compensating for deficiencies in the local network of arterials and collectors?	Sect. 1.2 (P1) and 3.6 (PP1)
		X	In lieu of granting new access, is there any reasonable alternative consisting of improvements to the existing roadway(s) or adjacent access points that could serve the need and purpose?	This request is for modification of an existing interchange.
X			Has the evaluation of existing interchanges and the local road network taken into account all proposed improvements currently identified in the State and/or Regional Long Range Plan?	Sect. 3.6 (PP5-P1)
X			Will the proposed change in access result in needed upgrades or improvements to the cross road for a significant distance away from the interchange?	Sect. 1.4 (SR 222 Study), 2.4, and 3.6 (PP1-P3); Fig. 3.1 and 3.2; App. B

Policy Point 2: "The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a))."

	Addressed			
	Adequately?		Question	Reference Location
Y	N	N/A	WY THINKS AT I THE IT IS A IT IN IT OF IT	
X			Was FHWA actively involved in preliminary studies and decisions? If not, then more detailed information may be required in support of proposed action.	FHWA attended a design concept meeting at TDOT on 8/23/2010.
				Sect. 3.5 (P1)
X			Did the study area cover sufficient area to allow for an evaluation of all reasonable alternatives?	Sect. 1.3 (P3), 2.4 (Traffic Volume Diagrams), and 3.6 (PP2); Fig. 1.1
X			Was a No-Build Alternative evaluated?	Sect. 2.4 (P1)(No-Build Alternative), 3.1 (Ramp Terminal Intersections), 3.5 (Viable Concepts), 3.6 (PP2- P1)(PP3-P1), and 4.0 (P1&P2); Tables 2.3 and 3.7
X			Considering the context of the proposal, is this the best location for the proposed new interchange?	Sect. 3.5 (P1) and 3.6 (PP2-P2)
X			Were different interchange configurations (Tight diamond, SPDI, Parclo) considered?	AASHTO Greenbook Chapter 10 Sect. 2.4 (Concepts) and 3.6 (PP2-P1); Table 2.3
X			Were pedestrians and bicyclists considered in the alternative evaluation?	Sect. 3.6 (PP2-P2) and 3.6 (PP3-P4)
X			Was there an evaluation of different intersection configurations (stop control, signal, roundabout, free right turns, etc?)	Sect. 3.1 (P4) and 3.6 (PP2-P1); Tables 3.7 and 3.8
X			Have Transportation Systems Management (i.e. HOV, ITS, Ramp Metering, Transit etc.) options been evaluated as an alternative to a new or modification to an existing interchange?	This request is for modification of an existing interchange. Sect. 3.6 (PP2-P3)

v		Did the report discuss how TSM alternatives were evaluated and	Sect. 3.6 (PP2-P3)
Λ		eliminated from consideration?	
		Does the proposal consider any future planned TSM strategies and is the	The design is consistent with
	X	design consistent with the ability to implement the future TSM	future TSM strategies, but
	71	strategies?	none were considered in the
		Stategies.	study.

Policy Point 3: "An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d))."

Addressed Adequately? Question **Reference Location** Ν N/A Sect. 3.1(P4) and 3.6 (PP3-Does the report demonstrate that a proper traffic operational analysis P1); Tables 3.3-3.8 was conducted? The analysis should include the applicable basic X freeway segments, freeway weaving segments, freeway ramp segments, ramp junctions and crossroad intersections related to the proposed access point and at least the two adjacent interchanges. Does the report include a **safety** analysis of the mainline, ramps and Sect. 3.1 (P4), 3.5 (P1), and 3.6 (PP3-P1&P2); Tables intersections of the proposed access point and the nearest adjacent X 3.3-3.8 interchange (provided they are near enough that it is reasonable to assume there may be impacts)? Has the design traffic volume been validated? Sect. 2.3 (P1) and 3.6 (PP3-X Sect. 2.3 (P1); App. A Does the report include verification that the data used in the traffic analysis is consistent with the traffic and air quality models MPOs use to X develop their current Transportation Plan (20-year) and Transportation Improvement Program (TIP)? Does the report include a design period of 20 years commencing at the Sect. 2.3 (Horizon Years and X Time Periods Analyzed) time of project approval (PS&E approval)? Does the report include quantitative analyses and results to identify Sect. 3.1 (Ramp Terminal X Intersections) and 3.6 (PP2operational differences between alternatives that are heavily congested? P1); Table 3.7 Viable Concepts 1&5; Sect. Has a conceptual signing plan been provided? X 3.6 (PP3-P4); App. B MUTCD Chapter 2E: Guide Is guidance signing (i.e., way-finding or trail blazing signs) clear and Signs - Freeways and simple? X Expressways Sect. 3.6 (PP3-P4) Do the results of the operational analysis result in a significant adverse Sect. 3.1 (Capacity Analysis X *Results) and 3.6 (PP3-P1);* impact to existing or future conditions? Tables 3.3-3.8 Will the proposed change in access result in needed upgrades or SR 222 would be upgraded improvements to the cross road for a significant distance away from the as part of the Megasite X development. interchange? If so, have impacts to the local network been disclosed and fully evaluated?" Sect. 2.4 (P2) and 3.6 (PP1-

X		Are the cross roads or adjacent surface level roads and intersections affected by the proposed access point analyzed to the extent (length) where impacts caused or affecting the new proposed access point are disclosed to the appropriate managing jurisdiction?	Sect. 3.6 (PP3-P3) and 4.1 (Local Agency Letters)
X		Are pedestrian and/or bicycle facilities included (as appropriate) and do these facilities provide for reasonable accommodation?	Sect. 3.6 (PP2-P2) and 3.6 (PP3-P4)
X		Does the proposed access secure sufficient Limits of Access adjacent to the Interchange ramps?	AASHTO's "A Policy on Design Standards Interstate System, 2005" Pg. 2; NCHRP Synthesis 332 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X		Does the proximity of the nearest crossroad intersections to the ramps contribute to safety or operational problems? Can they be mitigated??	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3)
	X	In addition to HCS, what analysis tools were employed and were they appropriate?	HCS only.
X		Has the proposal distinguished between nominal safety (i.e. adherence to design policies and standards) and substantive safety (actual and expected safety performance)?	Safety was considered throughout the study in the development of the concepts.
X		Will any individual elements within the recommended alternative be degraded operationally as a result of this action? If yes, are reasons provided to accept them?	Fig. 3.1 and 3.2; App. B Acceptable LOS were obtained from the capacity analysis results. Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		In evaluating whether the proposal has a "significant adverse impact" on safety, has the State Strategic Highway Safety Plan been used as a benchmark?	Safety was considered throughout the study in the development of the concepts. Sect. 3.6 (PP3-P4); Fig. 3.1 and 3.2; App. B
X		Are the proposed interchange design configurations able to satisfactorily accommodate the design year traffic volumes?	Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		If the project is to be built in stages, has the traffic operational and safety analyses considered the interim stages of the proposal?	Project is being built in one stage.

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the proposed access connect to a public road?	Sect. 2.4 (P2), 3.5 (P1), 3.6 (PP3-P3), and 3.6 (PP4-P2); Fig. 3.1 and 3.2; App. B
X			Are all traffic movements for full interchange access provided?	Sect. 2.4 (P2), 3.5, and 3.6 (PP4-P1); Fig. 3.1 and 3.2; App. B
		X	If not, is the proposed access for special purposes such as transit vehicles, HOVs, and/or a park and ride lot?	Providing for a full interchange.
		X	If a partial interchange is proposed, is there sufficient justification for providing only a partial interchange?	AASHTO Greenbook 2004 Pg. 821-823 Providing for a full interchange.
		X	If a partial interchange is proposed; was a full interchange evaluated as an alternative and is there sufficient justification to eliminate or discard it?	Providing for a full interchange.

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

	ddresse lequate		Overtion	Reference Location
Y	N	N/A	Question	Reference Location
		X	Is sufficient ROW available (or being acquired) to provide a full interchange at a future date (staged construction)?	Providing for a full interchange.
		X	Are you comfortable with how the missing movements will be accommodated on the surface streets and adjacent interchanges?	Providing for a full interchange.
X			Does FHWA support the selection of design controls/criteria and desired operational goals?	Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.5 (P1), and 3.6 (PP4-P2); Tables 3.3-3.8
X			Does the proposed access meet or exceed current design standards for the Interstate System?	AASHTO's Greenbook and A Policy on Design Standards Interstate System, 2005 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
		X	If not, have anticipated design exceptions been identified and reviewed (at least conceptually)?	Concept meets current design standards
		X	If expected design exceptions could have significant operational impacts on the Interstate and/or Crossroad system, are mitigation measures described?	Concept meets current design standards
X			Will the length of access control along the crossroad provide for acceptable operations and safety? (100-300' is a minimum. Additional access control is strongly encouraged when needed for safety and operational enhancement)	AASHTO "A Policy on Design Standards Interstate System" 2005 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X			Does FHWA support selection of opening and design years?	Sect. 2.3 (Horizon Year and Time Periods Analyzed)
X			Has each movement of the proposal been "tested" for ease of operation?	AASHTO Greenbook 2004 Pg. 863 Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.6 (PP3-P1), and 3.6 (PP4- P2); Table 3.7
Have	all desi	gn crite	ria (including but not limited to the following) been adequately addressed?	
X			a. Sight distance at ramp terminals (Don't overlook signal heads obscured by structures.)	AASHTO Greenbook 2004 Pg. 841 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			b. Sufficient storage on ramp to prevent queues from spilling on to the Interstate (based on current and/or future projected traffic demand)	Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			c. Vertical clearance	AASHTO "A Policy on Design Standards Interstate System" 2005 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			d. Pedestrian access through the interchange	AASHTO Greenbook 2004 Pg. 864 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP2-P2) and 3.6 (PP3-P4)
X			e. Length of acceleration/deceleration lanes	AASHTO Greenbook 2004 Pg. 823, 847 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			f. Length of tapers	AASHTO Greenbook 2004 Pg. 849 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			g. Spacing between ramps	Greenbook pg 843 & Ex. 10-68 and operational analysis Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			h. Lane continuity	AASHTO Greenbook 2004 Pg. 810 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			i. Lane balance	AASHTO Greenbook 2004 Pg. 810 AASHTO Greenbook 2004 Pg. 807 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			j. Uniformity in interchange design and operational patterns (i.e. right-side ramps, exit design consistent w/adjacent interchanges)	Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)

<u>Policy Point 5:</u> "The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93."

Addressed		ed		
Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the IJR discuss or include (as appropriate) other project(s), studies or planned actions that may have an effect on the report analysis results?	Sect. 1.4 (4 Projects Listed) and 3.6 (PP5-P1)
X			Does the project conform to the local planning, MPO or other related plans?	Sect. 3.6 (PP5-P1)
		X	Does the report include an endorsement of land use plans by the appropriate government entity before it is utilized for traffic generation purposes?	Existing land use is rural agriculture
X			Is the access request located within a Transportation Management Areas? (TMAs are metropolitan areas of 200,000 or more in population)	http://hepgis.fhwa.dot.gov/hepgis_v2/Urbanboundaries/Map.aspx Sect. 3.6 (PP5-P2)
X			Is the access request located within a non-attainment area for air quality? (requests for access in a non-attainment or maintenance areas for air quality must be a part of a conforming transportation plan)	Sect. 3.6 (PP5-P2)
X			Is the project included in the TIP/STIP and LRTP?	Sect. 3.6 (PP5-P1)
X			Is the access point covered as a part of an Interstate corridor study or plan? (especially important for areas where the potential exists for construction of future adjacent interchanges)	Sect. 3.6 (PP5-P2)

<u>Policy Point 6:</u> "In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111)."

Addressed	Our and the second	Defense I seeties
Adequately?	Question	Reference Location

Y	N	N/A		
X			Is it possible that new interchange(s) not addressed in the IJR could be added within an area of influence to the proposed access point? (If so, could the proposal preclude or otherwise be affected by any future access points?)	Sect. 3.6 (PP6-P1&P2)
		X	Does the IJR report include the traffic volumes generated by any future additional interchanges within a vicinity of influence that are proposed?	No planned future interchanges.
X			Does the IJR report fail to include any other proposed interstate access points within a vicinity of influence that are being proposed or are in the current long range construction program?	Sect. 1.4 (1 Potential Project Listed) and 3.6 (PP6- P1&P2)

Policy Point 7: "When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d))."

A	Addressed			
	Adequately?		Question	Reference Location
Y	N	N/A		
X			Does the access request adequately demonstrate that an appropriate effort of coordination has been made with appropriate proposed developments?	Sect. 2.3 (Megasite and Other Assumed Developments) and 3.6 (PP7-P1); Table 2.2
X			Are the proposed improvements compatible with the existing street network or are other improvements needed?	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3); Fig. 3.1 and 3.2; App. B
X			Are there any pre-condition contingencies required in regards to the timing of other improvements?	Sect. 3.6 (PP7-P3)
X			Have all commitments to improve the local transportation network been included in a TIP/STIP/LRTP prior to the Interstate access approval (final approval of NEPA document)?	Sect. 1.4 (P1) and 3.6 (PP7-P2)
		X	If pre-condition contingencies are required, are pertinent parties in agreement with these contingencies and is this documented?	No pre-conditions are required.
		X	If the proposed improvements are founded on the need for providing access to new development, are appropriate commitments in place to ensure that the development will likely occur as planned?	No commitments are required.
		X	If project is privately funded, are appropriate measures in place to ensure improvements will be completed if the developer is unable to meet financial obligations?	Project is not privately funded.
X			If the purpose and need to accommodate new development/traffic demands aren't fully known, is a worst case scenario used for future traffic?	Sect. 2.3 and 3.6 (PP7-P1); Table 2.2
X			Does the project require financial or infrastructure commitments from other agencies, organizations, or private entities?	Sect. 3.6 (PP7-P3)

Policy Point 8: "The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111)."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Are there any known social or environmental issues that could affect the proposal?	Sect. 2.2 (P1&P2) and 3.6 (PP8-P2)
X			Is the project consistent with the current TIP/STIP and LRTP and/or proposed amendments to the plan?	Sect. 3.6 (PP5-P1)(PP8-P2)
X			Although NEPA is a separate action, is an environmental overview for the proposed improvements included?	Sect. 2.2 (P2) and 3.6 (PP8-P2)

X	Is it appropriate to emphasize to the project stakeholders that the access approval will be handled as a two-step process? (i.e. Step 1: Engineering and Operational Acceptability and Step 2: Environmental Approvals)	Sect. 3.6 (PP8-P2)
X	Are all funding commitments included in a TIP/STIP/LRTP prior to the Interstate access approval (prior to final approval of the NEPA document)?	Sect. 3.6 (PP5-P1)(PP8-P2)
X	Are all commitments included in a TIP/STIP/LRTP prior to the Interstate access approval (prior to final approval of the NEPA document)?	Sect. 3.6 (PP5-P1)(PP8-P2)

Reference Location Legend: P# = Paragraph Number; PP# = Policy Point Number

Prompt List for Review of					
	Interstate System Access Change Requests				
Adequ		FHWA Interstate Access Policy Points			
Addres Yes		THWA Interstate Access I oney I onits			
X	No	Policy Point 1: The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).			
X		Policy Point 2: The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).			
X		Policy Point 3: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).			
X		Policy Point 4: The proposed access connects to a public road only and will provide for all traffic movements. Less than ``full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).			
X		Policy Point 5: The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.			
X		Policy Point 6: In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).			
X		Policy Point 7: When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).			
X		<u>Policy Point 8:</u> The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).			

Policy Point 1: "The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a))."

A	Addressed			
Ac	dequate	ely?	Question	Reference Location
Y	N	N/A		
X			Does the access request clearly describe the need and purpose of the proposal and identify project goals and objectives that are specific and measurable?	Sect. 1.2 and 3.6 (PP1)
X			Is the proposal in the best interest of the public, or does it merely serve a narrow interest?	Sect. 1.2 (P1) and 3.6 (PP1)
X			Is the proposal serving a regional transportation need, or is it merely compensating for deficiencies in the local network of arterials and collectors?	Sect. 1.2 (P1) and 3.6 (PP1)
		X	In lieu of granting new access, is there any reasonable alternative consisting of improvements to the existing roadway(s) or adjacent access points that could serve the need and purpose?	This request is for modification of an existing interchange.
X			Has the evaluation of existing interchanges and the local road network taken into account all proposed improvements currently identified in the State and/or Regional Long Range Plan?	Sect. 3.6 (PP5-P1)
X			Will the proposed change in access result in needed upgrades or improvements to the cross road for a significant distance away from the interchange?	Sect. 1.4 (SR 222 Study), 2.4, and 3.6 (PP1-P3); Fig. 3.1 and 3.2; App. B

Policy Point 2: "The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a))."

	Addressed			
	Adequately?		Question	Reference Location
Y	N	N/A	W TIWA - disels in a local in and in the disease of disease disease of the second se	
X			Was FHWA actively involved in preliminary studies and decisions? If not, then more detailed information may be required in support of proposed action.	FHWA attended a design concept meeting at TDOT on 8/23/2010.
				Sect. 3.5 (P1)
X			Did the study area cover sufficient area to allow for an evaluation of all reasonable alternatives?	Sect. 1.3 (P3), 2.4 (Traffic Volume Diagrams), and 3.6 (PP2); Fig. 1.1
X			Was a No-Build Alternative evaluated?	Sect. 2.4 (P1)(No-Build Alternative), 3.1 (Ramp Terminal Intersections), 3.5 (Viable Concepts), 3.6 (PP2- P1)(PP3-P1), and 4.0 (P1&P2); Tables 2.3 and 3.7
X			Considering the context of the proposal, is this the best location for the proposed new interchange?	Sect. 3.5 (P1) and 3.6 (PP2-P2)
X			Were different interchange configurations (Tight diamond, SPDI, Parclo) considered?	AASHTO Greenbook Chapter 10 Sect. 2.4 (Concepts) and 3.6 (PP2-P1); Table 2.3
X			Were pedestrians and bicyclists considered in the alternative evaluation?	Sect. 3.6 (PP2-P2) and 3.6 (PP3-P4)
X			Was there an evaluation of different intersection configurations (stop control, signal, roundabout, free right turns, etc?)	Sect. 3.1 (P4) and 3.6 (PP2-P1); Tables 3.7 and 3.8
X			Have Transportation Systems Management (i.e. HOV, ITS, Ramp Metering, Transit etc.) options been evaluated as an alternative to a new or modification to an existing interchange?	This request is for modification of an existing interchange. Sect. 3.6 (PP2-P3)

X		Did the report discuss how TSM alternatives were evaluated and	Sect. 3.6 (PP2-P3)
		eliminated from consideration?	
		Does the proposal consider any future planned TSM strategies and is the	The design is consistent with
	X	design consistent with the ability to implement the future TSM	future TSM strategies, but
	71	strategies?	none were considered in the
		suregies.	study.

Policy Point 3: "An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d))."

Addressed Adequately? Question **Reference Location** Ν N/A Sect. 3.1(P4) and 3.6 (PP3-Does the report demonstrate that a proper traffic operational analysis P1); Tables 3.3-3.8 was conducted? The analysis should include the applicable basic X freeway segments, freeway weaving segments, freeway ramp segments, ramp junctions and crossroad intersections related to the proposed access point and at least the two adjacent interchanges. Does the report include a **safety** analysis of the mainline, ramps and Sect. 3.1 (P4), 3.5 (P1), and 3.6 (PP3-P1&P2); Tables intersections of the proposed access point and the nearest adjacent X 3.3-3.8 interchange (provided they are near enough that it is reasonable to assume there may be impacts)? Has the design traffic volume been validated? Sect. 2.3 (P1) and 3.6 (PP3-X Sect. 2.3 (P1); App. A Does the report include verification that the data used in the traffic analysis is consistent with the traffic and air quality models MPOs use to X develop their current Transportation Plan (20-year) and Transportation Improvement Program (TIP)? Does the report include a design period of 20 years commencing at the Sect. 2.3 (Horizon Years and X Time Periods Analyzed) time of project approval (PS&E approval)? Does the report include quantitative analyses and results to identify Sect. 3.1 (Ramp Terminal X Intersections) and 3.6 (PP2operational differences between alternatives that are heavily congested? P1); Table 3.7 Viable Concepts 1&5; Sect. Has a conceptual signing plan been provided? X 3.6 (PP3-P4); App. B MUTCD Chapter 2E: Guide Is guidance signing (i.e., way-finding or trail blazing signs) clear and Signs - Freeways and simple? X Expressways Sect. 3.6 (PP3-P4) Do the results of the operational analysis result in a significant adverse Sect. 3.1 (Capacity Analysis X *Results) and 3.6 (PP3-P1);* impact to existing or future conditions? Tables 3.3-3.8 Will the proposed change in access result in needed upgrades or SR 222 would be upgraded improvements to the cross road for a significant distance away from the as part of the Megasite X development. interchange? If so, have impacts to the local network been disclosed and fully evaluated?" Sect. 2.4 (P2) and 3.6 (PP1-

X		Are the cross roads or adjacent surface level roads and intersections affected by the proposed access point analyzed to the extent (length) where impacts caused or affecting the new proposed access point are disclosed to the appropriate managing jurisdiction?	Sect. 3.6 (PP3-P3) and 4.1 (Local Agency Letters)
X		Are pedestrian and/or bicycle facilities included (as appropriate) and do these facilities provide for reasonable accommodation?	Sect. 3.6 (PP2-P2) and 3.6 (PP3-P4)
X		Does the proposed access secure sufficient Limits of Access adjacent to the Interchange ramps?	AASHTO's "A Policy on Design Standards Interstate System, 2005" Pg. 2; NCHRP Synthesis 332 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X		Does the proximity of the nearest crossroad intersections to the ramps contribute to safety or operational problems? Can they be mitigated??	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3)
	X	In addition to HCS, what analysis tools were employed and were they appropriate?	HCS only.
X		Has the proposal distinguished between nominal safety (i.e. adherence to design policies and standards) and substantive safety (actual and expected safety performance)?	Safety was considered throughout the study in the development of the concepts.
X		Will any individual elements within the recommended alternative be degraded operationally as a result of this action? If yes, are reasons provided to accept them?	Fig. 3.1 and 3.2; App. B Acceptable LOS were obtained from the capacity analysis results. Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		In evaluating whether the proposal has a "significant adverse impact" on safety, has the State Strategic Highway Safety Plan been used as a benchmark?	Safety was considered throughout the study in the development of the concepts. Sect. 3.6 (PP3-P4); Fig. 3.1 and 3.2; App. B
X		Are the proposed interchange design configurations able to satisfactorily accommodate the design year traffic volumes?	Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		If the project is to be built in stages, has the traffic operational and safety analyses considered the interim stages of the proposal?	Project is being built in one stage.

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

	Addressed Adequately?		Question	Reference Location
Y	N	N/A	Carana a	
X			Does the proposed access connect to a public road?	Sect. 2.4 (P2), 3.5 (P1), 3.6 (PP3-P3), and 3.6 (PP4-P2); Fig. 3.1 and 3.2; App. B
X			Are all traffic movements for full interchange access provided?	Sect. 2.4 (P2), 3.5, and 3.6 (PP4-P1); Fig. 3.1 and 3.2; App. B
		X	If not, is the proposed access for special purposes such as transit vehicles, HOVs, and/or a park and ride lot?	Providing for a full interchange.
		X	If a partial interchange is proposed, is there sufficient justification for providing only a partial interchange?	AASHTO Greenbook 2004 Pg. 821-823 Providing for a full interchange.
		X	If a partial interchange is proposed; was a full interchange evaluated as an alternative and is there sufficient justification to eliminate or discard it?	Providing for a full interchange.

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

A	ddress	ed	25.2(a), 625.4(a)(2), and 655.603(d))."	
Ad Y	lequate N	ly? N/A	Question	Reference Location
	,	X	Is sufficient ROW available (or being acquired) to provide a full interchange at a future date (staged construction)?	Providing for a full interchange.
		X	Are you comfortable with how the missing movements will be accommodated on the surface streets and adjacent interchanges?	Providing for a full interchange.
X			Does FHWA support the selection of design controls/criteria and desired operational goals?	Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.5 (P1), and 3.6 (PP4-P2); Tables 3.3-3.8
X			Does the proposed access meet or exceed current design standards for the Interstate System?	AASHTO's Greenbook and A Policy on Design Standards Interstate System, 2005 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
		X	If not, have anticipated design exceptions been identified and reviewed (at least conceptually)?	Concept meets current design standards
		X	If expected design exceptions could have significant operational impacts on the Interstate and/or Crossroad system, are mitigation measures described?	Concept meets current design standards
X			Will the length of access control along the crossroad provide for acceptable operations and safety? (100-300' is a minimum. Additional access control is strongly encouraged when needed for safety and operational enhancement)	AASHTO "A Policy on Design Standards Interstate System" 2005 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X			Does FHWA support selection of opening and design years?	Sect. 2.3 (Horizon Year and Time Periods Analyzed)
X			Has each movement of the proposal been "tested" for ease of operation?	AASHTO Greenbook 2004 Pg. 863 Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.6 (PP3-P1), and 3.6 (PP4- P2); Table 3.7
Have	all desig	gn crite	ria (including but not limited to the following) been adequately addressed?	
X			a. Sight distance at ramp terminals (Don't overlook signal heads obscured by structures.)	AASHTO Greenbook 2004 Pg. 841 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			b. Sufficient storage on ramp to prevent queues from spilling on to the Interstate (based on current and/or future projected traffic demand)	Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			c. Vertical clearance	AASHTO "A Policy on Design Standards Interstate System" 2005 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			d. Pedestrian access through the interchange	AASHTO Greenbook 2004 Pg. 864 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP2-P2) and 3.6 (PP3-P4)
X			e. Length of acceleration/deceleration lanes	AASHTO Greenbook 2004 Pg. 823, 847 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			f. Length of tapers	AASHTO Greenbook 2004 Pg. 849 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			g. Spacing between ramps	Greenbook pg 843 & Ex. 10-68 and operational analysis Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			h. Lane continuity	AASHTO Greenbook 2004 Pg. 810 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			i. Lane balance	AASHTO Greenbook 2004 Pg. 810 AASHTO Greenbook 2004 Pg. 807 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			j. Uniformity in interchange design and operational patterns (i.e. right-side ramps, exit design consistent w/adjacent interchanges)	Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)

<u>Policy Point 5:</u> "The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93."

Addressed		ed		
Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the IJR discuss or include (as appropriate) other project(s), studies or planned actions that may have an effect on the report analysis results?	Sect. 1.4 (4 Projects Listed) and 3.6 (PP5-P1)
X			Does the project conform to the local planning, MPO or other related plans?	Sect. 3.6 (PP5-P1)
		X	Does the report include an endorsement of land use plans by the appropriate government entity before it is utilized for traffic generation purposes?	Existing land use is rural agriculture
X			Is the access request located within a Transportation Management Areas? (TMAs are metropolitan areas of 200,000 or more in population)	http://hepgis.fhwa.dot.gov/hepgis_v2/Urbanboundaries/Map.aspx Sect. 3.6 (PP5-P2)
X			Is the access request located within a non-attainment area for air quality? (requests for access in a non-attainment or maintenance areas for air quality must be a part of a conforming transportation plan)	Sect. 3.6 (PP5-P2)
X			Is the project included in the TIP/STIP and LRTP?	Sect. 3.6 (PP5-P1)
X			Is the access point covered as a part of an Interstate corridor study or plan? (especially important for areas where the potential exists for construction of future adjacent interchanges)	Sect. 3.6 (PP5-P2)

<u>Policy Point 6:</u> "In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111)."

Addressed	Overtion	Defenence Leastion
Adequately?	Question	Reference Location

Y	N	N/A		
X			Is it possible that new interchange(s) not addressed in the IJR could be added within an area of influence to the proposed access point? (If so, could the proposal preclude or otherwise be affected by any future access points?)	Sect. 3.6 (PP6-P1&P2)
		X	Does the IJR report include the traffic volumes generated by any future additional interchanges within a vicinity of influence that are proposed?	No planned future interchanges.
X			Does the IJR report fail to include any other proposed interstate access points within a vicinity of influence that are being proposed or are in the current long range construction program?	Sect. 1.4 (1 Potential Project Listed) and 3.6 (PP6- P1&P2)

Policy Point 7: "When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d))."

A	Addressed			!
Adequately?			Question	Reference Location
Y	N	N/A]	
X			Does the access request adequately demonstrate that an appropriate effort of coordination has been made with appropriate proposed developments?	Sect. 2.3 (Megasite and Other Assumed Developments) and 3.6 (PP7-P1); Table 2.2
X			Are the proposed improvements compatible with the existing street network or are other improvements needed?	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3); Fig. 3.1 and 3.2; App. B
X			Are there any pre-condition contingencies required in regards to the timing of other improvements?	Sect. 3.6 (PP7-P3)
X			Have all commitments to improve the local transportation network been included in a TIP/STIP/LRTP prior to the Interstate access approval (final approval of NEPA document)?	Sect. 1.4 (P1) and 3.6 (PP7-P2)
		X	If pre-condition contingencies are required, are pertinent parties in agreement with these contingencies and is this documented?	No pre-conditions are required.
		X	If the proposed improvements are founded on the need for providing access to new development, are appropriate commitments in place to ensure that the development will likely occur as planned?	No commitments are required.
		X	If project is privately funded, are appropriate measures in place to ensure improvements will be completed if the developer is unable to meet financial obligations?	Project is not privately funded.
X			If the purpose and need to accommodate new development/traffic demands aren't fully known, is a worst case scenario used for future traffic?	Sect. 2.3 and 3.6 (PP7-P1); Table 2.2
X			Does the project require financial or infrastructure commitments from other agencies, organizations, or private entities?	Sect. 3.6 (PP7-P3)

Policy Point 8: "The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111)."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Are there any known social or environmental issues that could affect the proposal?	Sect. 2.2 (P1&P2) and 3.6 (PP8-P2)
X			Is the project consistent with the current TIP/STIP and LRTP and/or proposed amendments to the plan?	Sect. 3.6 (PP5-P1)(PP8-P2)
X			Although NEPA is a separate action, is an environmental overview for the proposed improvements included?	Sect. 2.2 (P2) and 3.6 (PP8-P2)

X	Is it appropriate to emphasize to the project stakeholders that the access approval will be handled as a two-step process? (i.e. Step 1: Engineering and Operational Acceptability and Step 2: Environmental Approvals)	Sect. 3.6 (PP8-P2)
X	Are all funding commitments included in a TIP/STIP/LRTP prior to the Interstate access approval (prior to final approval of the NEPA document)?	Sect. 3.6 (PP5-P1)(PP8-P2)
X	Are all commitments included in a TIP/STIP/LRTP prior to the Interstate access approval (prior to final approval of the NEPA document)?	Sect. 3.6 (PP5-P1)(PP8-P2)

Reference Location Legend: P# = Paragraph Number; PP# = Policy Point Number

4.0 SUMMARY AND CONCLUSIONS

As discussed in **Section 3.5**, this study determined that the following options are considered viable for this interchange location:

- Concept 1 Partial Traditional Diamond located east of the existing interchange.
- Concept 5 Combined Traditional/Tight Diamond located at the existing interchange.
- No-Build Alternative.

The No-Build Alternative was determined viable option if the Megasite is not developed. However, if the Megasite is developed, then the No-Build Alternative is a non-viable concept because the capacity of the existing interchange will not be satisfied (LOS F conditions) in the future 2034 design year.

Between the viable construction concepts, TDOT and ECD both prefer Concept 1 since the I-40 eastbound to S.R. 222 northbound traffic movement would be free-flow via a single lane loop ramp and removed from signalization as required with Concept 5. This traffic movement is the highest turning movement within the interchange totaling 586 vehicles during the 2034 morning peak period. The construction cost for both of these concepts are similar with Concept 1 (\$13.1 million) being slightly less than Concept 5 (\$13.2 million).

At this time, a tenant for the Megasite has not been identified. However, if a tenant is identified and the Megasite is developed, these proposed modifications will be needed to meet the passenger and freight transportation needs and to support the future logical pattern of development within the study area. Without the construction of one of these two (2) viable concepts, the existing level of service (LOS) at the I-40/S.R. 222 interchange will be LOS F which includes the development of the Megasite. The service life of the viable concepts along with the development of the Megasite will exceed the 2034 planning horizon.

4.1 TDOT Design Concurrence Letter and Local Agency Letters of Support

The TDOT Design concurrence letter and three (3) letters of local agency support are included on subsequent pages.

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION NASHVILLE, TENNESSEE 37243-0340

MEMORANDUM

TO:

Steve Allen, Director, Project Planning Division

FROM:

Carolyn Stonecipher, Director, Design Division

DATE:

September 9, 2010

SUBJECT:

Interchange Modification Study

Interstate 40 at State Route 222 (exit 42)

Fayette County

The subject Interchange Modification Study has been reviewed by my office and we concur with the conceptual plan as shown.

Please advise if this office can be of further assistance.

CAS:rdb

HAYWOOD COUNTY

TELEPHONE (731) 772-1432

OFFICE OF COUNTY MAYOR

COURTHOUSE

1 NORTH WASHINGTON . BROWNSVILLE, TN 38012

STATE OF TENNESSEE DEPT. OF TRANSPORTATION RECEIVED

JUN 2 2009

CHIEF ENGINEER

May 19, 2009

Paul Degges, P.E. Chief Engineer Tennessee Department of Transportation James K. Polk Building 505 Deaderick Street, Suite 700 Nashville, TN 37243-0349

Dear Mr. Degges:

The purpose of this letter is to support efforts by the Tennessee Department of Transportation to get operational approvals for proposed interchange studies along Interstate 40 in Haywood and Fayette Counties. We appreciate the opportunity to express our preferences on your conceptual drawings of the interchanges and commend your staff for their hard work.

As you know, the interchange at Exit 42 is currently insufficient to serve the I-40 Advantage Auto Park in Haywood County, assuming that a large project decides to locate on this TVA-certified megasite. Improvements to the existing interchange at SR 222, as shown on Concept 1, will add that capability and we respectfully ask you to submit an Interchange Modification Study to the Federal Highway Administration (FHWA).

Furthermore, a new I-40 interchange will be necessary if the megasite develops as expected. Another interchange at about mile marker 44, as shown on Concept 4, would provide additional interstate highway access to an assembly plant and adjoining supplier park. Again, we ask you to submit an Interchange Justification Study to FHWA in conjunction with the aforementioned Modification Study of Exit 42.

Having these interchange studies approved would make the megasite even more attractive to industrial prospects and we appreciate your willingness to seek the operational approvals mentioned above.

Respectfully

A. Franklin Smith, III

County Mayor

Town of Stanton

8 MAIN STREET P.O. BOX 97 STANTON, TENNESSEE 38069 731-548-2565 STATEOFTENNESSEE DEPT.OFTRANSPORTATION RECEIVED

JUN 2 2009

CHIEF ENGINEER

May 19, 2009

Paul Degges, P.E. Chief Engineer Tennessee Department of Transportation James K. Polk Building 505 Deaderick Street, Suite 700 Nashville, TN 37243-0349

Dear Mr. Degges:

The purpose of this letter is to support efforts by the Tennessee Department of Transportation to get operational approvals for proposed interchange studies along Interstate 40 in Haywood and Fayette Counties. We appreciate the opportunity to express our preferences on your conceptual drawings of the interchanges and commend your staff for their hard work.

As you know, the interchange at Exit 42 is currently insufficient to serve the I-40 Advantage Auto Park in Haywood County, assuming that a large project decides to locate on this TVA-certified megasite. Improvements to the existing interchange at SR 222, as shown on Concept 1, will add that capability and we respectfully ask you to submit an Interchange Modification Study to the Federal Highway Administration (FHWA).

Furthermore, a new I-40 interchange will be necessary if the megasite develops as expected. Another interchange at about mile marker 44, as shown on Concept 4, would provide additional interstate highway access to an assembly plant and adjoining supplier park. Again, we ask you to submit an Interchange Justification Study to FHWA in conjunction with the aforementioned Modification Study of Exit 42.

Having these interchange studies approved would make the megasite even more attractive to industrial prospects and we appreciate your willingness to seek the operational approvals mentioned above.

Respectfully,

Allan Sterbinsky Mayor of Stanton

STATE OF TENNESSEE DEPT. OF TRANSPORTATION RECEIVED

JUN 2 2009

CHIEF ENGINEER

111 North Washington P.O. Box 375 Brownsville, TN 38012 (731)772-1212

May 26, 2009

Paul Degges, P.E.
Chief Engineer
Tennessee Department of Transportation
James K. Polk Building
505 Deaderick Street, Suite 700
Nashville, TN 37243-0349

Dear Mr. Degges:

The purpose of this letter is to support efforts by the Tennessee Department of Transportation to get operational approvals for proposed interchange studies along Interstate 40 in Haywood and Fayette Counties. We appreciate the opportunity to express our preferences on your conceptual drawings of the interchanges and commend your staff for their hard work.

As you know, the interchange at Exit 42 is currently insufficient to serve the I-40 Advantage Auto Park in Haywood County, assuming that a large project decides to locate on the TVA-certified mega site. Improvements to the existing interchange at SR 222, as shown on Concept 1, will add that capability and we respectfully ask you to submit an Interchange Modification Study to the Federal Highway Administration (FHWA).

Furthermore, a new I-40 interchange will be necessary if the mega site develops as expected. Another interchange at about mile marker 44, as shown on Concept 4, would provide additional interstate highway access to an assembly plant and adjoining supplier park. Again, we ask you to submit an Interchange Justification Study to FHWA in conjunction with the aforementioned Modification Study of Exit 42.

Having these interchange studies approved would make the mega site even more attractive to industrial prospects and we appreciate your willingness to seek the operational approvals mentioned above.

Respectfully,

Webb F. Banks, Mayor

APPENDIX A TRAFFIC DATA

TDOT TRAFFIC VOLUME APPROVAL LETTER

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION PROJECT PLANNING DIVISION

SUITE 1000, JAMES K. POLK BUILDING 505 Deaderick Street NASHVILLE, TENNESSEE 37243-0344

John Schroer Commissioner Bill Haslam Governor

April 14, 2011

Mr. Steve Bryan TranSystems 5500 Franklin Pike Suite 202 Nashville, TN 37220

Subject : Updated Traffic Volume Projections for I-40 between Exit 35 and Exit 47 Fayette and Haywood Counties

Dear Mr. Bryan,

We have checked and reviewed the traffic forecasts you submitted on April 5, 2011 for the subject project. All traffic volumes and DHVs have our approval. If you have any questions, please contact me at (615) 741-5786 or via email at gregory.dyer@tn.gov.

Sincerely,

Greg Dyer

Roadway Specialist 2

CC: Mr. Tony Armstrong

2014 AND 2034 TRAFFIC DIAGRAMS

FAYETTE COUNTY I-40 AT SR 59 (EXIT 35) 2014 DESIGN HOUR VOLUMES

FAYETTE COUNTY I-40 AT SR 222 (EXIT 42) 2014 DESIGN HOUR VOLUMES

2014 PM DHV - 000 2014 AM DHV - 000

FAYETTE COUNTY
SR 222 AT PILOT STATION DRIVEWAY
2014 DESIGN HOUR VOLUMES

HAYWOOD COUNTY I-40 AT DANCYVILLE ROAD (EXIT 47) 2014 DESIGN HOUR VOLUMES

FAYETTE COUNTY I-40 AT SR 59 (EXIT 35) 2034 DESIGN HOUR VOLUMES

FAYETTE COUNTY I-40 AT SR 222 (EXIT 42) 2034 DESIGN HOUR VOLUMES

2034 PM DHV - 000 2034 AM DHV - 000

FAYETTE COUNTY
SR 222 AT PILOT STATION DRIVEWAY
2034 DESIGN HOUR VOLUMES

HAYWOOD COUNTY I-40 AT DANCYVILLE ROAD (EXIT 47) 2034 DESIGN HOUR VOLUMES

FAYETTE COUNTY
I-40 AT SR 59 (EXIT 35)
2014 AND 2034 AADT'S

FAYETTE COUNTY
I-40 AT SR 222 (EXIT 42)
2014 AND 2034 AADT'S

2014 AADT - 000 2034 AADT - 000 AADT TRUCK % - 0

FAYETTE COUNTY
SR 222 AT PILOT STATION DRIVEWAY
2014 AND 2034 AADT'S

HAYWOOD COUNTY
I-40 AT DANCYVILLE ROAD (EXIT 47)
2014 AND 2034 AADT'S

MEGASITE AND OTHER DEVELOPMENTS TRIP DISTRIBUTION PERCENTAGES AM/PM PEAK HOUR AND DAILY TRIPS

FAYETTE AND HAYWOOD COUNTIES

I-40 BETWEEN SR 59 & DANCYVILLE ROAD

TRIP DISTRIBUTION PERCENTAGES

FAYETTE AND HAYWOOD COUNTIES
I-40 BETWEEN SR 59 & DANCYVILLE ROAD

AM / PM PEAK HOUR TRIPS

FAYETTE AND HAYWOOD COUNTIES
I-40 BETWEEN SR 59 & DANCYVILLE ROAD

DAILY TRIPS

SUPPORT DATA

8	
#063	
#	
2	
Station Out:	
Interstate, Rural	
Station Type:	
40	C10 C10 M

¢0 #																																
Station Out: NO				Remarks		ACTUAL = 17271			2ND COUNT										2ND COUNT					AADT LESS THAN	EXPECTED VALUE BASED	DATA DATA				RAMP	RAMIP MOD PROC	RAMP MOD PROC
		Axle	Adjustment	Factor	29.0	0.67	0.67	0.67	0.67	0.67	0.67	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70			07.0	0.70	0.70	0.63	0.63	00.0
Interstate, Rural		Annual	Average	Daily	14,741	15,500	16,684	669,61	16,525	19,044	20,335	20,148	24,264	23,391	22,220	24,016	27,895	27,999	29,163	31,810	34,958	33,972	31,501	31,721			33,382	33,295	37,392	26,580	25,896	26,502
Station Type:		Average	Daily	Traffic	22,001	25,778					30,350	28,783	34,663	33,415	31,744	34,309	39,850	39,999	41,662	45,443	49,940	48,532	45,002	45,315			47,688	47,564	53,417	0	0	0
	-842	Average	Weekday	Traffic	22,682	28,020	22,433	29,694	29,362	28,180	28,102	27,154	32,701	33,982	34,505	34,309	43,315	42,552	40,845	44,552	48,961	44,525	44,120	43,158			45,854	47,093	53,957	0	0	0
04-1	SW OF 842			Vear	1985	9861	1987	1988	6861	1990	1661	1992	1993	1994	1995	9661	1997	8661	6661	2000	2001	2002	2003	2004			2005	2006	2007	2008	2009	2010
Route:	Location:			Month	90	0.5	770	90	0.7	0.5	0.5	0.5	0.5	0.5	90	90	9	90	90	0.5	92	04	10	97			90	90	90	92	(~)	Amend

Station Type:

EXPECTED VALUE BASED AADT GREATER THAN ON PREVIOUS YEARS Remarks RAMP MOD PROC RAMP MOD PROC ACTUAL = 15875 ACTUAL = 22115 2ND COUNT RAMP DATA EST Adjustment 0.70 0.70 0.67 0.67 0.67 29.0 0.70 0.70 0.70 0.70 0.70 0.70 0.70 79.0 0.67 0.63 0.03 Factor Average Annual Daily 17,758 19,469 20,616 25,683 24,977 24,668 25,000 30,365 15,975 18,000 34,030 30,670 30,448 34,253 26,798 26,568 26,834 14,387 5,884 31,164 36,234 33,943 Average Traffic Daily 21,473 23,843 29,059 29,452 36,690 35,240 44,519 43,819 35,682 31,593 43,378 48,118 48,614 48,490 43,497 51,763 48,933 50,894 E OF JCT. WITH SR-59 Weekday 22,137 22,926 23,474 21,736 27,045 27,252 27,675 27,715 34,290 41,459 41,607 45,318 47,280 50,715 33,662 29,805 40,165 45,394 00 43,385 45,732 \circ 47,661 48,377 Average Traffic 1-40 6861 9861 1988 0661 1994 1995 1996 1987 1992 1997 8661 6661 2000 2002 2003 2005 2006 2008 2009 2001 2004 2007 Location: Month Route: 04 0.5 90 04 05 05 05 05 05 05 05 05 06 06 92 03 4224-

Station Out: NO #991 Axle Station Type: Interstate, Rural Annual Average Location: W OF SR-76 INTER. (ATR 41) Average 140 Route:

	Remarks	12 MO, AVG.	12 MO. AVG.	12 MO, AVG.	12 MO, AVG.	12 MO. AVG.	12 MO. AVG.	ACTUAL = 18005						EST							AADT LESS THAN	EXPECTED VALUE BASED	ON PREVIOUS YEARS	חאות		EST		RAMP	ATR MONTHLY AVERAGE	ATR WEEKDAY FOR JULY
Adjustment	Factor	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70			000	00	0.70	0.70	0.70	0.70	0.70
Average	Daily	15,030	17,249	17,300	19,647	21,078	24,505	19,000	20,072	21,462	22,003	25,374	26,776	27,000	30,526	28,705	31,730	32,109	31,213	31,462	33,168			600 36	22,402	36,960	36,856	33,339	34,730	35,613
Daily	Traffic	0	0	0	0	0	0	26,873	28,675	30,660	31,433	36,248	38,252	0	43,608	41,007	45,329	45,870	44,590	44,946	47,383			51 404	101.	0	52,651	0	0	0
Weekday	Traffic	0	0	0	0	0	0	27,144	27,052	32,274	32,074	36,248	38,252		45,903	40,203	44,880	44,971	46,448	46,337	45,127			70002	11.774	0	52,130	0	0	0
	Year	1985	1986	1987	1988	6861	1990	1661	1992	1993	1994	1995	9661	1997	8661	6661	2000	2001	2002	2003	2004			3000	7007	2006	2007	2008	2009	2010
	Month	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90	25	10	040			00	000	08	90	0.5	5	0.7

Fayette

Station Number: 000004

Route:

SR-59

Station Type: Other Rural

Station Out:

Location:

NEAR TIPTON COUNTY LINE

Month	Year	Average Weekday Traffie	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
05	1985	1,725	1,708	1,690	0.99	
05	1986	1,741	1,828	1,810	0.99	
03	1987	1,530		1,651	0.99	
05	1988	2,080		2,122	0,99	
05	1989	2,185		2,142	0.99	
04	1990	2,095		2,095	0.99	
04	1991	1,958	1,997	1,977	0,99	
05	1992	2,079	2,037	2,017	0.99	
04	1993	2,169	2,126	2,104	0.99	
04	1994	2,230	2,185	2,164	0,99	•
06	1995	2,173	1,933	1,913	0,99	
05	1996	2,276	2,185	2,163	0.99	
05	1997	2,446	2,299	2,276	0.99	
05	1998	2,188	2,079	2,058	0.99	
0.5	1999	2,620	2,279	2,256	0.99	
06	2000	3,057	2,904	2,875	0.99	
04	2001	2,277	2,231	2,209	0,99	
02	2002	2,236	2,252	2,229	0,99	
04	2003	2,559	2,507	2,482	0.99	
06	2004	0	0	2,494	0,99	EST
03	2005	2,805	2,833	2,805	0.99	
0.3	2006	3,234	3,202	3,170	0.99	
02	2007	2,752	2,807	2,779	0.99	
08	2008	2,679	2,599	2,573	0,99	
04	2009	2,666	2,350	2.350	0,99	USED CLASS COUNT
06	2010	2,9	2,765	2,738	6,99	COUNT WAS LOW THE LAST TWO YEARS COUNTED

Fayette

Station Number: 000110

Route:

SR-59

Station Type:

Other Rural

Station Out:

NO

Location:

SE OF I-40

#110

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
06	2000	1,980	1,921	1,902	0.99	SCHOOL OUT
04	2001	3,301	3,169	3,137	0.99	2ND YR CT-SCHOOL IN
03	2002	0	0	4,372	0.99	EST
04	2003	3,051	2,989	2,960	0.99	AADT LESS THAN EXPECTED VALUE BASED ON PREVIOUS YEARS DATA
06	2004	3,231	3,101	3,070	0.99	
0.3	2005	2,725	2,752	2,725	0.99	
04	2006	3,335	3,168	3,137	0.99	OK - SEE 2004
02	2007	2,804	2,832	2,804	0,99	
08	2008	2,700	2,619	2,593	0.99	
0.5	2009	3,045	2,893	2,864	0,99	
06	2010	2,865	2,722	2,695	0.99	

Station Type: Other Rural

SR-222

Route:

N OF SOMERVILLE Location:

	NCME TO																HIGH SCHOOL IS IN			T					<u></u>	
																	Ή			EST					EST	
Adjustment	86.0	0.98	86.0	0.98	0.98	86.0	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.97
Average	398	576	653	652	753	862	736	.059	799	746	748	588	709	787	782	632	606	702	989	720	749	692	748	662	743	689
Average Daily	580	588	199				751	£99	929	761	764	009	614	803	798	645	928	716	700	0	764	706	764	929	0	703
Average Weekday Troffic	563	639	099	739	753	871	759	677	269	785	967	625	640	854	849	999	196	746	715	0	749	743	756	751	0	781
100	1985	1986	1987	1988	1989	0661	1661	1992	1993	1994	1995	9661	1997	8661	6661	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Z E	04	05	9	0.5	90	04	0.5	0.5	5	90	90	0.5	04	90	90	90	04	63	04	90	03	0.4	0.2	60	0.5	90

NEAR FAYETTE COLINE Location:

	Remarks																										
																		EST	EST			EST					,
Axle Adjustment	Factor	86.0	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	86.0	0.98	86.0	0.98	0.98	0.98	0.93
Annual	Daily	225	237	362	334	322	262	320	333	344	379	406	365	468	461	523	545	518	536	601	626	644	593	599	573	576	581
Average Daily	Traffic	230	242					327	340	351	387	415	372	478	470	534	556	0	0	614	639	0	909	611	585	588	593
Average Weekday		232	244	351	340	322	270	330	347	362	395	433	387	508	500	550	592	0	0	633	629	0	637	059	603	899	618
	Year	1985	9861	1987	1988	6861	1990	1661	1992	1993	1994	5661	9661	1997	8661	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	Month	92	90	2	90	90	2	0.5	0.5	0.5	90	90	90	0.5	0.5	90	0.5	0.5	04	90	0.4	7	90	04	0.7	0.5	90

\r \text{\text{\$\ext{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}\\ \text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$\text{\$\text{\$\text{\$\text{\$\text{\$\te																							SED								
Station Our:			Remarks	and the second s									EST		EST							AADT LESS THAN	EXPECTED VALUE BASED	ON PICE VIOUS YEAKS DATA	EST			EST			ACTUAL = 645
		Axle	Factor	0.97	0.97	0,97	0.97	0.97	0.97	76.0	76.0	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97			0.97	0.97	0.97	0.97	0.97	0.97	08.0
Other Rural		Annual	Daily	397	375	372	442	74	432	444	463	395	410	405	410	419	529	874	420	433	426	355			396	404	450	463	462	463	459
Station Type:		Average Daily	Traffic	409	387					458	17.7	407		418		432	545	493	433	446	439	366			0	4	464	0	476	477	999
~	URY	Average Weekday	Traffic	422	387	365	494	461	450	458	487	420		441		497	580	508	461	474	448	378			0	434	488	0	491	542	693
SR-179	: S. ASBURY		Year	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	9661	1997	1998	1999	2000	2001	2002	2003			2004	2005	2006	2007	2008	2009	2010
Route:	Location:		Month	0.5	90	04	90	0.7	0.5	0.5	05	0.5	20	90	90	92	0.5	90	0.5	0.5	04	90			90	90	90	90	0.7	0.5	90

SR-179

Route:

Station Type: Other Rural

	Remarks																				EST						USED CLASS COUNT
Axle Adjustment	Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	26.0	0.89
Annual	Daily	613	623	191	25	755	819	1,045	S)5	956	785	803	50	841	959	946	853	937	956	668	964	226	956	912	886	924	068
Average	Traffic	632	542					1,077	937	986	608	828	868	867	686	975	879	996	986	726	0	1,002	985	940	516	952	0
Average Weekday	Traffic	652	642	753	808	7.78	853	1,088	956	1,016	834	872	945	966	1,052	1,005	935	1,028	957	956	0	1,044	1,037	1,000	242	1,082	0
	Year	1985	1986	1987	1988	1989	0661	1661	1992	1993	1994	1995	9661	1997	8661	6661	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	Month	05	90	90	90	90	0.5	0.5	90	92	90	90	90	.50	90	90	0.5	0.5	03	90	90	90	90	0.5	7.0	90	90

2009 TRAFFIC MAP

HAYWOOD COUNTY

TENNESSEE

TENNESSEE DEPARTMENT OF TRANSPORTATION

LONG RANGE AND PROJECT PLANNING DIVISIONS
IN COOPDITION WITH THE

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION

County: Haywood

Station Number: 000001

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
07	2008	498	483	473	0.98	
05	2009	512	517	507	0.98	
06	2010	605	587	575	0.98	

Haywood

Station Number:

000002

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
07	2008	391	379	372	0.98	
05	2009	432	436	428	0.98	
06	2010	495	480	471	0.98	

Haywood County:

Station Number: 000003

Route:

I-40

Station Type: Interstate, Rural

Station Out:

NO

Location: SR-179

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
07	2008	487	472	463	0.98	
05	2009	447	451	442	0.98	
06	2010	503	423	414	0.98	

A-36

County: Haywood Station Number: 000004

Route: I-40 Station Type: Interstate, Rural Station Out: NO

Location: SR-179

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
07	2008	560	543	532	0.98	
05	2009	475	480	470	0.98	
06	2010	582	565	553	0.98	

County: Fayette Station Number: 000005

Route: I-40 Station Type: Interstate, Rural Station Out: NO

Location: SR-222

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
09	2008	2,694	2,478	2,429	0.98	
05	2009	2,922	2,805	2,749	0.98	
06	2010	3,464	3,152	3,089	0.98	

Fayette

Station Number:

000006

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
09	2008	2,496	2,296	2,250	0.98	
05	2009	2,419	2,322	2,276	0.98	
06	2010	3,252	2,959	2,900	0.98	

Fayette

Station Number:

000007

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
08	2008	1,630	1,614	1,581	0.98	
05	2009	1,551	1,489	1,459	0.98	
06	2010	1,831	1,666	1,633	0.98	

Fayette

Station Number:

000008

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
09	2008	1,852	1,704	1,670	0.98	
05	2009	1,762	1,692	1,658	0.98	
06	2010	1,991	1,812	1,776	0.98	

Fayette

Station Number:

000001

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
09	2008	2,421	2,227	2,183	0.98	
05	2009	2,302	2,210	2,166	0.98	
06	2010	2,316	1,945	1,907	0.98	

Fayette

Station Number:

000002

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
09	2008	1,100	1,012	992	0.98	
05	2009	972	933	914	0.98	
06	2010	1,218	1,108	1,086	0.98	

Fayette

Station Number:

000003

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
09	2008	818	753	738	0.98	
05	2009	743	713	699	0.98	
06	2010	791	720	705	0.98	

Fayette

Station Number:

000004

Route:

I-40

Station Type:

Interstate, Rural

Station Out:

NO

Location:

Month	Year	Average Weekday Traffic	Average Daily Traffic	Annual Average Daily	Axle Adjustment Factor	Remarks
09	2008	2,101	1,933	1,894	0.98	
05	2009	2,067	1,984	1,945	0.98	
06	2010	1,994	1,815	1,778	0.98	

Interstate Traffic Counts - 2007

xit 35	SR 59	1 2	25,65: 24,669	[276] 5 4 3	24,858 24,669	52,027 54,664 52,243 50,513 49,337	[06] 79-1039 [04] [05] [06] 24-81	-1,730 -2,906	-3.42% -5.89%
xit 35			24,669	4		52,027 54,664 52,243 50,513	[04] [05] [06] 24-81		
xit 35			24,669	4		54,664 52,243 50,513	[05] [06] 24-81		
xit 35			24,669	4		54,664 52,243 50,513	[05] [06] 24-81		
			24,669	4		54,664 52,243 50,513	[05] [06] 24-81		
			24,669	4		52,243 50,513	[06]		
			24,669	4		50,513	[04]		
			24,669	4			[04]		
					24,669	49,337	[04]	-2,906	-5.897
			25,447						
			25,447						
xit 42	SR222		25,447						
xit 42	SR222	2	25,447	3					
xit 42	SR222		25,447				[06]		
xit 42	SR222				25,447	50,894	24-74		
xit 42	SR222								
		5		8					
		6		7					
l Co.							10.41		
			1,777						
					2< 700	52 417			
			26,709		26,709	55,417	36-03		
	CD 170		1						
xit 47	SK 179	1	473	4	532				
							[04]		
		2	372		100				
			26,326		26,326	52,651			
							1111/4		
xit 52	Stanton - Ko	oko Road		1					
7		5		8					
		6		7					
			23,896		23,896	47,792	38-62		
xit 56	SR 76						FO 47		
		10		11					
						45 520			
	xit 47	xit 47 SR 179 xit 52 Stanton - Ko	xit 47 SR 179 1 2 xit 52 Stanton - Koko Road 5 6	26,709 xit 47 SR 179 1 473 2 372 xit 52 Stanton - Koko Road 5 6 23,896 xit 56 SR 76 9 10	Co.	Co.	26,709 26,709 53,417 xit 47 SR 179 1 473 4 532 2 372 3 463 26,326 26,326 52,651 xit 52 Stanton - Koko Road 5 8 6 7 23,896 23,896 47,792 xit 56 SR 76 9 12 10 11	Co.	Co.

Long Engineering 5550 Franklin Pike, Suite 202 Nashville, TN 37220

File Name: am peak_northern terminal_CB1

Site Code : Exit 42 Start Date : 8/27/2008

Page No : 1

Groups Printed- Autos - Trucks

						Gr	oups Pi	rinted- Au	<u>ıtos - Tr</u>	ucks							,
		SR	222		I-	40 WB (Off-Rai	mp		SR	222		I	40 WB	On-Rai	np	
		From	North			From	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
06:00 AM	3	3	0	6	0	0	8	8	0	3	13	16	0	0	0	0	30
06:15 AM	10	4	0	14	0	1	11	12	0	5	10	15	0	0	0	0	41
06:30 AM	5	8	0	13	0	0	11	11	0	1	15	16	0	0	0	0	40
06:45 AM	9	10	0	19	0	0	11	11	0	2	11	13	0	0	0	0	43
Total	27	25	0	52	0	1	41	42	0	11	49	60	0	0	0	0	154
07.00.434	1.0	2	0	10	1 0	0	0	0	1 0		0	1.1	1 0			0	1 24
07:00 AM	10	2	0	12	0	0	8	8	0	6	8	14	0	0	0	0	34
07:15 AM	2	6	0	8	1	0	7	8	0	7	14	21	0	0	0	0	37
07:30 AM	4	8	0	12	0	0	16	16	0	1	11	12	0	0	0	0	40
07:45 AM	4	10	0	14	1	0	8	9	0	7	11	18	0	0	0	0	41
Total	20	26	0	46	2	0	39	41	0	21	44	65	0	0	0	0	152
08:00 AM	2	3	0	5	0	0	6	6	0	3	14	17	0	0	0	0	28
08:15 AM	3	2	0	5	0	0	4	4	0	2	7	9	0	0	0	0	18
08:30 AM	1	4	0	5	0	0	5	5	0	5	8	13	0	0	0	0	23
08:45 AM	3	4	0	7	0	0	12	12	0	3	8	11	0	0	0	0	30
Total	9	13	0	22	0	0	27	27	0	13	37	50	0	0	0	0	99
G 1m 1		- 4		420			405	440	۱ ۵		420		1 0				1 40-5
Grand Total	56	64	0	120	2	1	107	110	0	45	130	175	0	0	0	0	405
Apprch %	46.7	53.3	0		1.8	0.9	97.3		0	25.7	74.3		0	0	0		
Total %	13.8	15.8	0	29.6	0.5	0.2	26.4	27.2	0	11.1	32.1	43.2	0	0_	0	0	
Autos	55	61	0	116	2	1	52	55	0	40	63	103	0	0	0	0	274
% Autos	98.2	95.3	0	96.7	100	100	48.6	50	0	88.9	48.5	58.9	0	0	0	0	67.7
Trucks	1	3	0	4	0	0	55	55	0	5	67	72	0	0	0	0	131
% Trucks	1.8	4.7	0	3.3	0	0	51.4	50	0	11.1	51.5	41.1	0	0	0	0	32.3

File Name: am peak_northern terminal_CB1

Site Code: Exit 42 Start Date: 8/27/2008

File Name: am peak_northern terminal_CB1

Site Code: Exit 42 Start Date: 8/27/2008

		SR	222		I-	40 WB	Off-Ra	mp		SR	222		I-	40 WB	On-Rai	mp	
		From	North			Fron	ı East			From	South			Fron	ı West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Anal	ysis Fror	n 06:00	AM to 0	8:45 AM	- Peak 1	of 1											
Peak Hour for E	ntire Inte	ersection	Begins	at 06:15 A	M												
06:15 AM	10	4	0	14	0	1	11	12	0	5	10	15	0	0	0	0	41
06:30 AM	5	8	0	13	0	0	11	11	0	1	15	16	0	0	0	0	40
06:45 AM	9	10	0	19	0	0	11	11	0	2	11	13	0	0	0	0	43
07:00 AM	10	2	0	12	0	0	8	8	0	6	8	14	0	0	0	0	34
Total Volume	34	24	0	58	0	1	41	42	0	14	44	58	0	0	0	0	158
% App. Total	58.6	41.4	0		0	2.4	97.6		0	24.1	75.9		0	0	0		
PHF	.850	.600	.000	.763	.000	.250	.932	.875	.000	.583	.733	.906	.000	.000	.000	.000	.919

File Name : am peak_southern terminal_cb2 Site Code : Exit 42

Site Code : Exit 42 Start Date : 8/27/2008

Page No : 1

Groups Printed- Autos - Trucks

								Gro	ups r ri	meu- A	utos -	TTUCK	.5								1
			SR 22	2			I-40 E	B On	-Ramp)			SR 22	2			I-40 I	EB Off	-Ramp)	
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	uth			F	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00 AM	0	11	0	0	11	0	0	0	0	0	7	17	0	0	24	4	0	2	0	6	41
06:15 AM	0	13	0	0	13	0	0	0	0	0	7	12	0	0	19	8	0	0	0	8	40
06:30 AM	0	16	1	0	17	0	0	0	0	0	13	15	0	0	28	13	0	1	0	14	59
06:45 AM	0	21	0	0	21	0	0	0	0	0	12	14	0	0	26	11	1	0	0	12	59
Total	0	61	1	0	62	0	0	0	0	0	39	58	0	0	97	36	1	3	0	40	199
07:00 AM	0	12	0	0	12	0	0	0	0	0	10	16	0	0	26	9	0	1	0	10	48
07:15 AM	0	11	1	0	12	0	0	0	0	0	26	16	0	0	42	16	0	2	0	18	72
07:30 AM	0	21	1	0	22	0	0	0	0	0	12	13	0	0	25	13	0	2	0	15	62
07:45 AM	0	22	0	0	22	0	0	0	0	0	16	12	0	0	28	16	0	2	0	18	68
Total	0	66	2	0	68	0	0	0	0	0	64	57	0	0	121	54	0	7	0	61	250
											_										
08:00 AM	0	12	0	0	12	0	0	0	0	0	15	17	0	0	32	12	0	1	0	13	57
08:15 AM	0	9	0	0	9	0	0	0	0	0	13	10	0	0	23	6	2	1	0	9	41
08:30 AM	0	9	1	0	10	0	0	0	0	0	15	14	0	0	29	15	0	0	0	15	54
08:45 AM	0	10	0	0	10	0	0	0	0	0	14	11	0	0	25	17	0	0	0	17	52
Total	0	40	1	0	41	0	0	0	0	0	57	52	0	0	109	50	2	2	0	54	204
Grand Total	0	167	4	0	171	0	0	0	0	0	160	167	0	0	327	140	3	12	0	155	653
Apprch %	0	97.7	2.3	0		0	0	0	0		48.9	51.1	0	0		90.3	1.9	7.7	0		
Total %	0	25.6	0.6	0	26.2	0	0	0	0	0	24.5	25.6	0	0	50.1	21.4	0.5	1.8	0	23.7	
Autos	0	111	4	0	115	0	0	0	0	0	61	93	0	0	154	58	1	11	0	70	339
% Autos	0	66.5	100	0	67.3	0	0	0	0	0	38.1	55.7	0	0	47.1	41.4	33.3	91.7	0	45.2	51.9
Trucks	0	56	0	0	56	0	0	0	0	0	99	74	0	0	173	82	2	1	0	85	314
% Trucks	0	33.5	0	0	32.7	0	0	0	0	0	61.9	44.3	0	0	52.9	58.6	66.7	8.3	0	54.8	48.1

File Name: am peak_southern terminal_cb2

Site Code : Exit 42 Start Date : 8/27/2008

File Name: am peak_southern terminal_cb2

Site Code : Exit 42 Start Date : 8/27/2008

			SR 22	2			I-40 E	B On-	-Ramp				SR 22	2			I-40 E	EB Off	-Ramp)]
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour Ar	nalysis	From (06:00 A	M to 0	8:45 AN	1 - Peal	k 1 of 1														
Peak Hour for	Entire	Inters	ection 1	Begins	at 07:15	AM															
07:15 AM	0	11	1	0	12	0	0	0	0	0	26	16	0	0	42	16	0	2	0	18	72
07:30 AM	0	21	1	0	22	0	0	0	0	0	12	13	0	0	25	13	0	2	0	15	62
07:45 AM	0	22	0	0	22	0	0	0	0	0	16	12	0	0	28	16	0	2	0	18	68
08:00 AM	0	12	0	0	12	0	0	0	0	0	15	17	0	0	32	12	0	1	0	13	57
Total Volume	0	66	2	0	68	0	0	0	0	0	69	58	0	0	127	57	0	7	0	64	259
% App. Total	0	97.1	2.9	0		0	0	0	0		54.3	45.7	0	0		89.1	0	10.9	0		
PHF	.000	.750	.500	.000	.773	.000	.000	.000	.000	.000	.663	.853	.000	.000	.756	.891	.000	.875	.000	.889	.899

File Name: pm peak_northern terminal_cb2

Site Code: Exit 42 Start Date: 8/26/2008

Page No : 1

Groups Printed- Autos - Trucks

		,	SR 22	22			I-40 V	/B Of	f-Ram _l)			SR 22	22			I-40 W	/B On	-Ram	р	l
		Fre	om N	orth			Fi	om E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:15 PM	5	6	0	0	11	1	1	15	0	17	0	11	8	0	19	0	0	0	0	0	47
04:30 PM	0	8	0	0	8	2	0	14	0	16	0	12	11	0	23	0	0	0	0	0	47
04:45 PM	2	9	0	0	11	0	1	11	0	12	0	16	14	0	30	0	0	0	0	0	53
Total	7	23	0	0	30	3	2	40	0	45	0	39	33	0	72	0	0	0	0	0	147
05:00 PM	2	4	0	0	6	2	0	14	0	16	0	8	8	0	16	0	0	0	0	0	38
05:15 PM	1	7	0	0	8	0	0	11	0	11	0	11	14	0	25	0	0	0	0	0	44
05:30 PM	1	5	0	0	6	Ö	Ō	15	0	15	0	10	9	0	19	0	0	0	0	0	40
05:45 PM	3	4	Ō	Ö	7	Ö	Ö	19	Ö	19	Ö	5	13	Ō	18	Ö	Ö	Ō	Ö	Ö	44
Total	7	20	0	0	27	2	0	59	0	61	0	34	44	0	78	0	0	0	0	0	166
06:00 PM		6	0	0	6	0	0	10	0	10	l 0	9	14	0	23	0	0	0	0	0	39
Grand Total	14	49	0	0	63	5	2	109	0	116	0	82	91	0	173	0	0	0	0	0	352
	22.2	49 77.8	0	0	03	4.3	1.7	94	0	110	0	47.4	52.6	0	173	0	0	0	0	U	332
Apprch %			0	-	47.0				0	22	0			0	40.4	_	0	_	0	0	l
Total %	4	13.9	0	0	17.9	1.4	0.6	31	0	33	0	23.3	25.9		49.1	0	0	0	0	0	000
Autos	14	47	0	0	61	5	7	43	0	49	0	80	38	0	118	0	0	0	0	0	228
% Autos	100	95.9	0	0	96.8	100	50	39.4	0	42.2	0	97.6	41.8	0	68.2	0	0	0	0	0	64.8
Trucks	0	2	0	0	2	0	1	66	0	67	0	2	53	0	55	0	0	0	0	0	124
% Trucks	0	4.1	0	0	3.2	0	50	60.6	0	57.8	0	2.4	58.2	0	31.8	0	0	0	0	0	35.2

File Name: pm peak_northern terminal_cb2

Site Code: Exit 42 Start Date: 8/26/2008

			SR 22 om No	_				VB Off	f-Ram ast	p			SR 22 om Sc	_				VB On om W	-Ram /est	p	
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysi	s Fron	n 04:1	5 PM t	o 06:00	PM -	Peak ²	l of 1			•										
Peak Hour fo	or Enti	re Inte	rsection	on Beg	gins at 0	4:15 P	M														
04:15 PM	5	6	0	0	11	1	1	15	0	17	0	11	8	0	19	0	0	0	0	0	47
04:30 PM	0	8	0	0	8	2	0	14	0	16	0	12	11	0	23	0	0	0	0	0	47
04:45 PM	2	9	0	0	11	0	1	11	0	12	0	16	14	0	30	0	0	0	0	0	53
05:00 PM	2	4	0	0	6	2	0	14	0	16	0	8	8	0	16	0	0	0	0	0	38
Total Volume	9	27	0	0	36	5	2	54	0	61	0	47	41	0	88	0	0	0	0	0	185
% App. Total	25	75	0	0		8.2	3.3	88.5	0		0	53.4	46.6	0		0	0	0	0		
PHF	.450	.750	.000	.000	.818	.625	.500	.900	.000	.897	.000	.734	.732	.000	.733	.000	.000	.000	.000	.000	.873

File Name: pm peak_southern terminal_cb1

Site Code : 00000000 Start Date : 8/26/2008

Page No : 1

Groups Printed- Autos - Trucks

		SR	222		I-	-40 EB ()n-Ran	np		SR	222		I-	40 EB (Off-Rar	np	
		From	North			From	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:15 PM	0	18	0	18	0	0	0	0	20	14	0	34	21	0	4	25	77
04:30 PM	0	21	2	23	0	0	0	0	22	19	1	42	14	0	5	19	84
04:45 PM	0	16	3	19	0	0	0	0	13	25	0	38	9	0	4	13	70_
Total	0	55	5	60	0	0	0	0	55	58	1	114	44	0	13	57	231
													i.				
05:00 PM	0	18	1	19	0	0	0	0	15	15	0	30	23	0	2	25	74
05:15 PM	0	16	1	17	0	0	0	0	14	24	0	38	19	0	1	20	75
05:30 PM	0	21	0	21	0	0	0	0	19	16	0	35	24	0	2	26	82
05:45 PM	0	24	0	24	0	0	0	0	14	16	0	30	17	1	2	20	74_
Total	0	79	2	81	0	0	0	0	62	71	0	133	83	1	7	91	305
													i.				
06:00 PM	0	14	0	14	0	0	0	0	23	22	0	45	18	0	2	20	79
Grand Total	0	148	7	155	0	0	0	0	140	151	1	292	145	1	22	168	615
Apprch %	0	95.5	4.5		0	0	0		47.9	51.7	0.3		86.3	0.6	13.1		
Total %	0	24.1	1.1	25.2	0	0	0	0	22.8	24.6	0.2	47.5	23.6	0.2	3.6	27.3	
Autos	0	82	6	88	0	0	0	0	73	95	0	168	76	1	22	99	355
% Autos	0	55.4	85.7	56.8	0	0	0	0	52.1	62.9	0	57.5	52.4	100	100	58.9	57.7
Trucks	0	66	1	67	0	0	0	0	67	56	1	124	69	0	0	69	260
% Trucks	0	44.6	14.3	43.2	0	0	0	0	47.9	37.1	100	42.5	47.6	0	0	41.1	42.3

File Name: pm peak_southern terminal_cb1

Site Code : 00000000 Start Date : 8/26/2008

		SR	222		I-	40 EB (On-Ran	np		SR	222		I-	40 EB	Off-Rar	np	
		From	North			Fron	East			From	South			From	West		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 04:15 l	PM to 0	6:00 PM -	Peak 1 c	of 1											
Peak Hour for E	ntire Inte	rsection	Begins	at 05:15 P	M												
05:15 PM	0	16	1	17	0	0	0	0	14	24	0	38	19	0	1	20	75
05:30 PM	0	21	0	21	0	0	0	0	19	16	0	35	24	0	2	26	82
05:45 PM	0	24	0	24	0	0	0	0	14	16	0	30	17	1	2	20	74
06:00 PM	0	14	0	14	0	0	0	0	23	22	0	45	18	0	2	20	79
Total Volume	0	75	1	76	0	0	0	0	70	78	0	148	78	1	7	86	310
% App. Total	0	98.7	1.3		0	0	0		47.3	52.7	0		90.7	1.2	8.1		
PHF	.000	.781	.250	.792	.000	.000	.000	.000	.761	.813	.000	.822	.813	.250	.875	.827	.945

APPENDIX B CONCEPT FIGURES

APPENDIX C COST ESTIMATE WORKSHEETS

Modified Exit 42 Interchange Cost Estimate Summary

ITEM			COST		
Clear & Grubbing:		\$53,320	=	\$53,000	\$53,000
Earthwork:		\$1,440,775	=	\$1,441,000	\$1,494,000
Pavement Removal:		\$43,476	=	\$43,000	\$1,537,000
Erosion Control:		\$317,000	=	\$317,000	\$1,854,000
Drainage:		\$41,531	=	\$42,000	\$1,896,000
Structures:		\$4,849,920	=	\$4,850,000	\$6,746,000
Railroad:		\$0	=	\$0	\$6,746,000
Paving:		\$1,327,006	=	\$1,327,000	\$8,073,000
Retaining Walls:		\$0	=	\$0	\$8,073,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$8,323,000
Topsoil:		\$198,955	=	\$199,000	\$8,522,000
Seeding:		\$52,226	=	\$52,000	\$8,574,000
Sodding:		\$25,000	=	\$25,000	\$8,599,000
Signing:		\$260,000	=	\$260,000	\$8,859,000
Signalization:		\$150,000	=	\$150,000	\$9,009,000
Fencing:		\$76,347	=	\$76,000	\$9,085,000
Guardrail:		\$80,500	=	\$81,000	\$9,166,000
Rip-Rap:		\$25,000	=	\$25,000	\$9,191,000
Other Construction:		\$431,614	=	\$432,000	\$9,623,000
Sub-Total:		\$9,622,669	=	\$9,623,000	\$9,623,000
10% Eng. & Cont.:		\$962,267	=	\$962,000	\$962,000
Sub-Total:		\$10,584,936	=	\$10,585,000	\$10,585,000
Total Construction Cost :	Sub-Total	+	Mobil.		
	\$10,585,000	+	\$450,000	=	\$11,035,000
			10% Prel. En	g.	
	\$11,035,000	+	\$962,000	=	\$11,997,000
	Row Total	+	Utility Total	+	Constr. Total
	\$355,000	+	\$700,000	+	\$11,997,000
TOTAL SECTION COST :					\$13,052,000
Mobilization Table					
\$0 to \$1,000,000	5%				\$ -
\$1,000,000 to \$5,000,000	\$50,000 + 4.5%	S over \$1,000.0	00		\$ - \$ - \$ - \$ 450,000
\$5,000,000 to \$3,000,000 \$5,000,000 to \$10,000,000	\$230,000 + 4%				φ -
\$10,000,000 to \$20,000,000					\$ 450,000
\$20,000,000 +	\$780,000 + 3%				\$ 430,000

											eatment Area																South	Middle	North		
		Total	North of I-40	North of I-40	North of I-40	North of I-40	South of I-40	South of I-40	South of I-40	South of I-40	Possible Wastewater Treatment Area	331.000	•	331 000 (Rounded)	24 000	24,000		•	355,000			4,477 Ramp NE Quad		1.980 Ramp SW Quad			9,140 Conn. To SR 222	14,520 Conn. To SR 222	3,363 Conn. To SR 222	53.320	
		Ţ										\$	· 69 6			₽ €	s (S	↔			49	•	· 69	.	· so	ss	ss	69	69	
		Land Cost	6,485.08	438.41	36,295.84	3,174.49	50,903.83	152,175.80	41,287.53	2,092.06	38,039.03	323.968.60		11 11	l I	II	II	II	II											Total	
	Improvements	(1.2 factor)	₩.	⇔	₩.	\$	€	€	\$	€	\$	· ·			Oor Troot for Incide		Per Unit	Per Unit			Cost (\$/ac.)	\$2,500	\$2,500	\$2.500	\$2,500	\$2,500	\$2,500	\$2,500	\$2,500		
	Cost (\$/Acre)*1.2	factor	\$ 13,000.00	•	\$ 13,000.00	\$ 13,000.00	\$ 13,000.00	\$ 13,000.00	•	\$ 13,000.00	\$ 13,000.00				000 6	3,000		25,000		ar. and Grub.)	Acres	1.791	0.000	0.792	3.115	4.821	3.656	5.808	1.345		
		Acres	0.499	0.034	2.792	0.244	3.916	11.706	3.176	0.161	2.926	25.453			>	< >	× :	×		of Brush and Trees (Clear. and Grub.)	Area (sq.ft./ac.)	78,000	0	34.500	135,700	210,000	159,250	253,000	58590		
		Area (sf)	21,730	1,469	121,619	10,637	170,567	906'609	138,345	7,010	127,460			ement Costs	000			×				120	0	150	115	200	130	200	186		
Right of Way Cost		Parcel										Sub-Total	Cost of Bldgs.	Total I and & Improvement Costs	Incidentale	meidentals	Replacement Housin	Moving Expenses	TOTAL ROW COSTS	201-07.05 Removal and Disposal	Length (ft.)	650	0	230	1180	1050	1225	1265	315		

Maintenance of Traffic							
Drums (Ea.) Cost (\$/drum) Signs (s.f.) Cost (\$/s.f.)	('J	Total					
712-06							
712-02.02 Interconnected Portable Barrier Rail Lgth.(ft.)	Barrier Rail .)						
712-07.03 Temporary Barricades Lgth.(ft.)		Total Lgth. C	Cost (\$/ft)				
Total Maintenance of Traffic						\$ 250,000	
Signing							
Signs (s.f.) Cost (\$/s.f.)	f.)	Total 713-13.03	3.03				
						\$ 50,000 \$ 210,000	
					Total	\$ 260,000	
Utility Relocation Cost							
	No. of Poles			Cost (\$/pole) (Cost (\$/ft)		
6" Water 1500					\$50.00	\$75,000	
12" Water					\$80.00	0\$	
Utility Poles 6" Gas	25			\$15,000.00	\$30.00	\$375,000 \$0	
Wastewater Treatment System						\$250,000	
					Total	\$700,000.00	

ط	Avg. Exc. Depth 10 10 10 10 10	Factor 27 27 27 27 27 27 27 27	C.Y. 40276 52241 42250 55828 58019 53778	\$3.50 \$3.50 \$3.50 \$3.50 \$3.50 \$3.50		Total \$140,965.74 \$182,842.59 \$147,875.00 \$195,397.22 \$203,064.81 \$188,222.22	Ramp NE Quad Ramp NW Quad Ramp SW Quad Ramp SE Quad Loop Ramp Conn. To SR 222 (North of I-40)
2		i			Total	\$1,440,775.00	
sf/sy			Cost (\$/sy)				
6			\$3.75		Total	\$43,475.83	
Length (ft) 700			cy/ft 0.266		Cost (\$/cy) \$30.00	\$186.20	
Length (ft) 700			Cost (\$/ft) \$40.00			\$28,000.00	Note: Based on 24" concrete pipe @
lbs/wall 172			# H'walls 14		Cost (\$/lb) \$1.30	\$3,130.40	loo ber pipes)
cy/wall 1.52			# H'walls 14		Cost (\$/cy) \$480.00	\$10,214.40	
					Total	\$41,531.00	
s.f.				Cost/s.f.		Total	
31680 9792 6481.25				\$150.00 \$10.00 \$125.00	Total	\$4,752,000.00 \$97,920.00 \$190,625.00 \$4,849,920.00	Remove existing bridge over I-40 Barrier wall along I-40

Total

Paving													
	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)	/	factor	Mass	Mass (lbs/cy)	Total cy or sy	lbs/Tons	Total Tons	Cost (\$/ton or cy)	Ľ	Total
Famp Conc. Pvm t. 501-01 02	121611		0.75	_	27			3378 08			\$50.00	U	168.904
Ramp Treated Base	- - - - I)		i)))	,	
313-03	121611		0.330	/	6			4459.07			\$10.00	⇔	44,591
Ramp Base Stone													
303-01	121611		0.330	/	27	2	2.03			3017.30	\$13.50	69	40,734
P.C. and T.C.													
402-01	121611				6	0	.35		231	20.47	\$375.00	⇔	7,677
402-02	121611				6		12		2000	81.07	\$15.00	⇔	1,216
Outside ShId'r.													
501-01.02	20572	2	0.75	_	27			571.44			\$20.00	⇔	28,572
313-03	20572	2	0.330	_	6			754.31			\$10.00	ઝ	7,543
303-01	20572	2	0.25	_	27	2	.03			386.68	\$13.50	↔	5,220
303-01	20572	2	1.30	_	27	2	.03			2010.72	\$13.50	⇔	27,145
303-01	20572	5.57			27	2	2.03			8615.17	\$13.50	⇔	116,305
Conn. To SR 222	Lath/Area (sa.ft.)		Depth (ft)		factor					Tons			
<u>~</u>	192342		0.104	27	3816	2000				1414	\$60.00	49	84.815
307-02.08 (B-M2)	192342		0.167	27	4068	2000				2420	\$60.00		145,187
307-02.01 (Gr. 'A')	192342		0.292	27	4140	2000				4306	\$60.00		258,354
303-01	192342		0.833	27	2.03					12046	\$14.00	₩	168,647
Outside Shld'r.	8320	12	1.255	27	2.03					9421	\$14.00		131,889
	8320	4.85	1.115	27	2.03					3383	\$14.00		47,359
411-01.07 ('E' Shidr.)	8320	10	0.125	27	3708	2000				714	\$60.00	⇔	42,848
Access Rd. to Pilot													
411-02.10 (Surf.)	0		0.104	27	3816	2000				0	\$60.00	69	•
307-02.08 (B-M2)	0		0.167	27	4068	2000				0	\$60.00	⇔	•
307-02.01 (Gr. 'A')	0		0.292	27	4140	2000				0	\$60.00	⇔	•
303-01	0		0.833	27	2.03					0	\$14.00	⇔	•
Outside Shld'r.	0	12	1.255	27	2.03					0	\$14.00	⇔	•
	0	4.85	1.115	27	2.03					0	\$14.00	so	•
411-01.07 ('E' Shldr.)	0	10	0.125	27	3708	2000				0	\$60.00	⇔	

Topsoil (203-07)											
Based on 4:1 slope ar Length (ft.)	Based on 4:1 slope and 10' fill with 48' widening Length (ft.) Slope Lgth.(ft.) T	aning Thk.(ft.)	cy factor	cy	Cost (\$/cy)	Both Sides					
14,487	41.2	0.5	27	11053.0	\$9.00	2				Total	\$ 198,955
Seeding (801-01) Length (ft.)	Slope Lgth.(ft.)			sf	sf/unit	Both Sides	factor	nnits	Cost (\$/unit)		
14,487	41.2			596864	1,000	2	1.25	1492	\$35.00	Total	\$ 52,226
Signalization											
1 Signal at WB Ramp										Total	\$ 150,000
Fencing											
Length (ft.)	707-02.01				Cost (\$/ft)						
4491					\$17.00					Total	\$ 76,347
Guardrail											
		(Length (ft) 3000	Cost (\$/ft) \$17.50		(# Anch.) 10	Cost (\$/Anch.) \$2,500.00		(# Attn.) 1	Cost (\$/Attn.) \$3,000.00		
			\$52,500.00			\$25,000.00			\$3,000.00	Total	\$80,500.00

New Interchange Cost Estimate Summary

ITEM			COST		
Clear & Grubbing:		\$24,408	=	\$24,000	\$24,000
Earthwork:		\$1,209,989	=	\$1,210,000	\$1,234,000
Pavement Removal:		\$43,583	=	\$44,000	\$1,278,000
Erosion Control:		\$295,000	=	\$295,000	\$1,573,000
Drainage:		\$41,531	=	\$42,000	\$1,615,000
Structures:		\$4,849,920	=	\$4,850,000	\$6,465,000
Railroad:		\$0	=	\$0	\$6,465,000
Paving:		\$1,268,020	=	\$1,268,000	\$7,733,000
Retaining Walls:		\$0	=	\$0	\$7,733,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$7,983,000
Topsoil:		\$120,826	=	\$121,000	\$8,104,000
Seeding:		\$31,717	=	\$32,000	\$8,136,000
Sodding:		\$50,000	=	\$50,000	\$8,186,000
Signing:		\$200,000	=	\$200,000	\$8,386,000
Signalization:		\$250,000	=	\$250,000	\$8,636,000
Fencing:		\$77,197	=	\$77,000	\$8,713,000
Guardrail:		\$77,500	=	\$78,000	\$8,791,000
Rip-Rap:		\$25,000	=	\$25,000	\$8,816,000
Other Construction:		\$393,977	=	\$394,000	\$9,210,000
Sub-Total:		\$9,208,668	=	\$9,209,000	\$9,210,000
10% Eng. & Cont.:		\$920,867	=	\$921,000	\$921,000
Sub-Total:		\$10,129,535	=	\$10,130,000	\$10,131,000
Total Construction Cost :	Sub-Total	+	Mobil.		
	\$10,131,000	+	\$435,000	=	\$10,566,000
			10% Prel. En	q.	
	\$10,566,000	+	\$921,000	=	\$11,487,000
	Row Total	+	Utility Total	+	Constr. Total
	\$281,000	+	\$450,000	+	\$11,487,000
TOTAL SECTION COST :					\$12,218,000
Mobilization Table	5 0/				Φ
\$0 to \$1,000,000	5%		00		5 -
\$1,000,000 to \$5,000,000	\$50,000 + 4.5%				\$ - \$ - \$ - \$ 435,000
\$5,000,000 to \$10,000,000	\$230,000 + 4%				ф -
\$10,000,000 to \$20,000,000					\$ 435,000
\$20,000,000 +	\$780,000 + 3%	over \$20,000,0	JUU		\$ -

Parcel Acres Acr	Right of Way Cost			Č				
12.264 \$ 13,000.00 \$ 6,485.08 North of 12.792 \$ 13,000.00 \$ 36,295.84 North of 12.792 \$ 13,000.00 \$ 31,7449 North of 10.244 \$ 13,000.00 \$ 31,7449 North of 10.244 \$ 13,000.00 \$ 31,7449 North of 10.244 \$ 13,000.00 \$ 31,7449 North of 10.202 \$ 13,000.00 \$ 19,620.29 \$ 200th of 10.000 \$ 13,000.00 \$ 19,620.29 \$ 20th of 10.000 North of 10.000	Parcel	Area (sf)	Acres	Cost (\$/Acre)*1.2 factor	Improvements (1.2 factor)	Land Cost	Total	
12.264 \$ 13.000.00 \$ 36,295.84 North of the control of the		21,730	0.499					
12.264 \$ 13,000.00 \$ 3,174.49 North of the street		1,469	0.034 2.792					
3.916 \$ 13,000.00 \$ 19,620.29 South of		10,637	0.244	•		•		
9.202 \$ 13,000.00 \$ 19,612.29 South of Possible 3.063 \$ 13,000.00 \$ 13,000.00 \$ 13,000.00 \$ 13,000.00 \$ 13,000.00 \$ 1,000		170,567	3.916	•		40		
3.063		400,820	9.202	`				
12.264		133,410	3.063	•				
X	Total		12 264		<u>√</u>	159 435 03		
X	t of Bldgs. tengenices				•			
X \$ 3,000 Per Tract for Incide = \$ 24,000 X \$ 12,000 Per Unit = \$ 24,000 X \$ 25,000 Per Unit = \$ 281,000 of Brush and Trees (Clear, and Grub.) Area (sq.ft./ac.) Acres Cost (\$/ac.) Ag.) Area (sq.ft./ac.) Acres Cost (\$/ac.) Ag.) Area (sq.ft./ac.) \$ 4,477 0 0.000 \$2,500 \$ 1,524 88,550 0.610 \$2,500 \$ 5,082 58590 1.345 \$2,500 \$ 5,082 58590 1.345 \$2,500 \$ 5,082 16740 0.384 \$2,500 \$ 961 156860 3.601 \$2,500 \$ 9003	I Land & Improve	ment Costs				=		(Rounded)
Sin 0	lentals	8	×	3,000	Per Tract for Incide	II	24,000	
TS al and Disposal of Brush and Trees (Clear. and Grub.) Width (ft.) (Avg.) Area (sq.ft./ac.) Acres Cost (\$/ac.) 120 778,000 1.791 \$2,500 \$\$ 4,477 0 0 0.000 \$2,500 \$\$ 5,082 115 88,550 0.610 \$2,500 \$\$ 5,082 116 88,550 1.345 \$2,500 \$\$ 5,082 1174 16740 0.384 \$2,500 \$\$ \$9,003 Total \$\$ \$2,408	acement Housin		×	12,000	Per Unit		•	
Serion S	ing Expenses	0	×	25,000	Per Unit	=	•	
\$2,500 \$ 4,477 \$2,500 \$ 1,524 \$5,082 \$2,500 \$ \$ 1,524 \$2,500 \$ \$ 5,082 \$2,500 \$ \$ 5,082 \$2,500 \$ \$ 3,363 \$2,500 \$ \$ 9,003	AL ROW COSTS					-		
\$2,500 \$ 4,477 \$2,500 \$ 1,524 \$2,500 \$ 1,524 \$2,500 \$ 5,082 \$2,500 \$ 5,082 \$2,500 \$ 961 \$2,500 \$ 961 \$2,500 \$ 961 \$2,500 \$ 9603	07.05 Removal a	nd Disposal of Bro	ush and Trees (C	lear. and Grub.)				
120 78,000 1.791 \$2,500 \$ 4,477 0 0 0.000 \$2,500 \$ 1,524 150 26,550 0.610 \$2,500 \$ 1,524 115 88,550 2.033 \$2,500 \$ 5,082 186 58590 1.345 \$2,500 \$ 961 124 16740 0.384 \$2,500 \$ 9,003 124 156860 3.601 \$2,500 \$ 9,003	Length (ft.)	Width (ft.)(Avg.)	Area (sq.ft./ac.)	Acres	Cost (\$/ac.)			
0 0 0.000 \$2,500 \$ 150 26,550 0.610 \$2,500 \$ 115 88,550 2.033 \$2,500 \$ 118 58590 1.345 \$2,500 \$ 124 16740 0.384 \$2,500 \$ 124 156860 3.601 \$2,500 \$ 103 82,500 \$ 1	650	120	78,000	1.791	\$2,500	\$\$	4,477 F	Ramp NE Quad
150 26,550 0.610 \$2,500 \$ 1,524 115 88,550 2.033 \$2,500 \$ 5,082 186 58590 1.345 \$2,500 \$ 3,363 124 16740 0.384 \$2,500 \$ 9,003 124 156860 3.601 \$2,500 \$ 9,003	0	0	0	0.000	\$2,500	φ.	•	Ramp NW Quad
115 88,550 2.033 \$2,500 \$ \$,082 186 58590 1.345 \$2,500 \$ 3,363 124 16740 0.384 \$2,500 \$ 961 124 156860 3.601 \$2,500 \$ 9,003 Total \$ 24,408	177	150	26,550	0.610	\$2,500	\$	1,524	Ramp SW Quad
186 58590 1.345 \$2,500 \$ 3,363 124 16740 0.384 \$2,500 \$ 961 124 156860 3.601 \$2,500 \$ 9,003 Total \$ 24,408	770	115	88,550	2.033	\$2,500	\$	5,082	Ramp SE Quad
124 16740 0.384 \$2,500 \$ 961 124 156860 3.601 \$2,500 \$ 9,003 Total \$ 24,408	315	186	58590	1.345	\$2,500	€\$	3,363	Conn. To SR 222
124 156860 3.601 \$2,500 \$ 9,003 Total \$ 24,408	135	124	16740	0.384	\$2,500	€	961	Conn. To SR 222
↔	1265	124	156860	3.601	\$2,500	\$	9,003	Conn. To SR 222
•						Total	24.408	
							2016-	

Concept 2

Maintenance of Traffic							
Drums (Ea.) Signs (s.f.)	Cost (\$/drum) Cost (\$/s.f.)	Total					
712-06							
712-02.02 Interconnected Portable Barrier Rail Lgth.(ft.) Cost (\$/ft.)	I Portable Barrier Rail Cost (\$/ft.)						
712-07.03 Temporary Barricades Lgth.(ft.)	rricades No.	Total Lgth.	Cost (\$/ft)				
Total Maintenance of Traffic	ffic					\$ 250,000	
Signing							
ns (s.f.)	Cost (\$/s.f.)	Total	713-13.03			200,000	
Utility Relocation Cost							
6" Water	Lgth (ft) No. of Poles 1500			Cost (\$/pole)	Cost (\$/ft) \$50.00	\$75,000	
12. water Utility Poles 6" Gas	25			\$15,000.00	\$30.00	\$375,000 \$00 \$0	
					Total	\$450,000.00	

>
ARY
₹
€
5
\mathbf{z}
>
╘
Ε
Z
$\vec{}$
ಠ
Õ
R
₹
Z
≥
O
9
×
EA
2
Ω
Ш
H
\geq
É
S
Ш

Concept 2

203-01 Road and Drain. Exc. (Uncl.)	in. Exc. (Uncl.)							
Length (ft.)	Width (ft.)	Avg. Exc. Depth	Factor	C.Y.	Cost/cy		Total	
1673	65	10	27	40276	\$3.50		\$140,965.74	Ramp NE Quad
21/0	တို့ လ	2 (27	39722	\$3.50		\$182,842.59	Ramp NW Quad
2095	65	10 2	27	50435	\$3.50			Ramp SE Quad
1210 2950	120	100	27	53778 109259	\$3.50		\$188,222.22 \$382,407,41	Conn. To SR 222 (North of I-40) Conn. To SR 222 (South of I-40)
0 700						F		
8,798						lotal	\$1,209,988.89	
202-03.01 Pavement Removal	Removal							
Area (sf)		sf/sy		Cost (\$/sy)				
104600		თ		\$3.75		Total	\$43,583.33	
<u>Drainage</u>								
Bedding 204-07		Length (ft) 700		cy/ft 0.266		Cost (\$/cy) \$30.00	\$186.20	
Pipe 607-05.02		Length (ft) 700		Cost (\$/ft) \$40.00			\$28,000.00	Note: Based on 24" concrete pipe @
Headwall Steel 611-07.02		lbs/wall 172		# H'walls 14		Cost (\$/lb) \$1.30	\$3,130.40	100' per pipe (7 pipes)
Headwall Conc. 611-07.01		cy/wall 1.52		# H'walls 14		Cost (\$/cy) \$480.00	\$10,214.40	
						Total	\$41,531.00	
New Structure								
Length (ft.)	Width (ft.)	s.f.			Cost/s.f.		Total	
360	88 32	31680 9792			\$150.00 \$10.00		\$4,752,000.00 \$97,920.00	Remove existing bridge over I-40
						Total	\$4,849,920.00	

	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)	/	factor	Mass (lbs/cy)		Total cy or sy	suo1/sql	lbs/Tons Total Tons	Cost (\$/ton or cy)		Total
Ramp Conc. Pvm't.													
501-01.02	97587		0.75	_	27			2710.75			\$50.00	⇔	135,538
Ramp Treated Base													
313-03	97587		0.330	_	6			3578.19			\$10.00	⇔	35,782
Ramp Base Stone													
303-01	97587		0.330	_	27	2.03	3			2421.24	\$13.50	⇔	32,687
P.C. and T.C.													
402-01	97587				6	0.35	10		231	16.43	\$375.00	⇔	6,161
402-02	97587				6	12			2000	92.09	\$15.00	⇔	926
Outside ShId'r.													
501-01.02	15176	2	0.75	_	27			421.56			\$20.00	⇔	21,078
313-03	15176	2	0.330	_	6			556.45			\$10.00	⇔	5,565
303-01	15176	2	0.25	_	27	2.05	3			285.25	\$13.50	⇔	3,851
303-01	15176	2	1.30	_	27	2.03	3			1483.31	\$13.50	⇔	20,025
303-01	15176	5.57			27	2.03	3			6355.43	\$13.50	⇔	85,798
Conn. To SR 222	Lgth/Area (sq.ft.)		Depth (ft)		factor					Tons			
411-02.10 (Surf.)	204480		0.104	27	3816	2000				1503	\$60.00	⇔	90,168
307-02.08 (B-M2)	204480		0.167	27	4068	2000				2572	\$60.00	⇔	154,350
307-02.01 (Gr. 'A')	204480		0.292	27	4140	2000				4578	\$60.00	⇔	274,658
303-01	204480		0.833	27	2.03					12806	\$14.00	⇔	179,290
Outside ShId'r.	8320	12	1.255	27	2.03					9421	\$14.00	⇔	131,889
	8320	4.85	1.115	27	2.03					3383	\$14.00	⇔	47,359
411-01 07 ('E' Shidr)	8320	70	0.125	27	2700	0000				1777	0000	•	070 07

MARY	
Y SUM	
UANTITY	
A AND Q	
AKDOWN /	
TE BREA	
STIMA	
Ш	

Concept 2

Topsoil (203-07)											
Based on 4:1 slope a Length (ft.)	Based on 4:1 slope and 10' fill with 48' widening Length (ft.) Slope Lgth.(ft.) Thk.(ft.)	əning Thk.(ft.)	cy factor	cy	Cost (\$/cy)	Both Sides					
8,798	41.2	0.5	27	6712.5	\$9.00	2				Total	\$ 120,826
Seeding (801-01)	:			·			,				
Length (ft.)	Slope Lgth.(ft.)			sţ	sf/unit	Both Sides	factor	nnits	Cost (\$/unit)		
8,798	41.2			362478	1,000	2	1.25	453	\$35.00	Total	\$ 31,717
Signalization											
2 Signals at Ramps										Total	\$ 250,000
Fencing											
Length (ft.)	707-02.01				Cost (\$/ft)						
4541					\$17.00					Total	\$ 77,197
Guardrail											
		(Length (ft) 3000		Cost (\$/ft) \$17.50		(# Anch.) 10		Cost (\$/Anch.) \$2,500.00			
				\$52,500.00				\$25,000.00		Total	\$77,500.00

Modified Exit 42 Interchange Cost Estimate Summary

ITEM			COST		
Clear & Grubbing:		\$52,505	=	\$53,000	\$53,000
Earthwork:		\$1,227,852	=	\$1,228,000	\$1,281,000
Pavement Removal:		\$42,882	=	\$43,000	\$1,324,000
Erosion Control:		\$317,000	=	\$317,000	\$1,641,000
Drainage:		\$41,531	=	\$42,000	\$1,683,000
Structures:		\$5,217,720	=	\$5,218,000	\$6,901,000
Railroad:		\$0	=	\$0	\$6,901,000
Paving:		\$1,482,092	=	\$1,482,000	\$8,383,000
Retaining Walls:		\$0	=	\$0	\$8,383,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$8,633,000
Topsoil:		\$162,465	=	\$162,000	\$8,795,000
Seeding:		\$42,647	=	\$43,000	\$8,838,000
Sodding:		\$25,000	=	\$25,000	\$8,863,000
Signing:		\$200,000	=	\$200,000	\$9,063,000
Signalization:		\$250,000	=	\$250,000	\$9,313,000
Fencing:		\$80,410	=	\$80,000	\$9,393,000
Guardrail:		\$77,500	=	\$78,000	\$9,471,000
Rip-Rap:		\$25,000	=	\$25,000	\$9,496,000
Other Construction:		\$425,188	=	\$425,000	\$9,921,000
Sub-Total:		\$9,919,792	=	\$9,920,000	\$9,921,000
10% Eng. & Cont.:		\$991,979	=	\$992,000	\$992,000
Sub-Total:		\$10,911,772	=	\$10,912,000	\$10,913,000
Total Construction Cost :	Sub-Total	+	Mobil.		
	\$10,913,000	+	\$462,000	=	\$11,375,000
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				, , , , , , , , , , , , , , , , , , , ,
			10% Prel. En	g.	
	\$11,375,000	+	\$992,000	=	\$12,367,000
	Row Total	+	Utility Total	+	Constr. Total
	\$322,000	+	\$700,000	+	\$12,367,000
TOTAL SECTION COST :					\$13,389,000
					•
Mobilization Table					
\$0 to \$1,000,000	5%				\$ -
\$1,000,000 to \$5,000,000	\$50,000 + 4.5%	6 over \$1,000,0	00		\$ - \$ - \$ - \$ 462,000
\$5,000,000 to \$10,000,000	\$230,000 + 4%				\$ -
\$10,000,000 to \$20,000,000					\$ 462,000
\$20,000,000 +	\$780,000 + 3%				\$ -

			North of I-40	Area south of Interstate 40		Possible Wastewater Treatment Area	11_		11_				. 11					Ramp NE Quad	Ramp NW Quad	Ramp SE Quad	Ramp SW Quad	Conn. To SR 22 (North)	Conn. To SR 22 (South)					
		Total									298 000		298 000	24,000	74,000		•	000 000	322,000			7.346		11,613	2,296	5,682	25,568	52,505
		Land Cost	6,485.08	438.41	2,235.90	58,311.98	4,988.41	143,818.02	51,418.64	, 29,720.34	224 957 00 \$		1			₩	\$	•	n II			€	· 4 9	49	S	₩	\$	Total \$
	Improvements	(1.2 factor)	€	₩.	₩	₩	\$	· •	\$	↔	•			Dor Tract for Incide		Per Unit	Per Unit				Cost (\$/ac.)	\$2.500	\$2.500	\$2,500	\$2,500	\$2,500	\$2,500	
	Cost (\$/Acre)*1.2	factor	•	\$ 13,000.00	\$ 13,000.00	\$ 13,000.00	_	_	\$ 13,000.00	\$ 13,000.00				3 000	3,000		25,000			ear. and Grub.)	Acres	2,938	0.000	4.645	0.918	2.273	10.227	
		Acres	0.499	0.034	0.172	4.486	0.384	11.063	3.955	2.286	22 878			>	< >	× :	X			sh and Trees (Cl	Area (sq.ft./ac.)	128,000	0	202,350	40,000	000,66	445500	
		Area (sf)	21,730	1,469	7,492	195,390	16,715	481,901	172,292	99,586			ent Costs	800	ο :	×	×			1 Disposal of Brus	Width (ft.)(Avg.)	200	0	285	200	225	180	
Right of Way Cost		Parcel									Sub-Total	Cost of Bldgs.	Total I and & Improvement Costs	Incidentale		Replacement Housin	Moving Expenses	STSCS WOG INTOT	I O I AL ROW COSIS	201-07.05 Removal and Disposal of Brush and Trees (Clear. and Grub.)	Length (ft.) W	640	0	710	200	440	2475	

Maintenance of Traffic							
Drums (Ea.) Cost (\$/drum) Signs (s.f.) Cost (\$/s.f.)		Total					
712-06							
712-02.02 Interconnected Portable Barrier Rail Lgth.(ft.) Cost (\$/ft.)	ır Rail						
712-07.03 Temporary Barricades Lgth.(ft.)	F	Total Lgth.	Cost (\$/ft)				
Total Maintenance of Traffic					₩	\$ 250,000	
Signing							
Signs (s.f.) Cost (\$/s.f.)		Total 713	713-13.03		S	\$ 200,000	
Utility Relocation Cost							
Lgth (ft) 6" Water 12" Water	No. of Poles			Cost (\$/pole)	Cost (\$/ft) \$50.00 \$80.00	\$75,000	
Utility Poles 6" Gas	25			\$15,000.00	\$30.00	\$375,000 \$0	
Wastewater Treatment System					Total	\$250,000 \$700,000.00	

TY SUMMARY
AND QUANTITY
\TE BREAKDOWN AND QUANTI '
ESTIMA

Concept 3

203-01 Road and Drain. Exc. (Uncl.)	in. Exc. (Uncl.)							
Length (ft.)	Width (ft.)	Avg. Exc. Depth	Factor	C.Y.	Cost/cy		Total	
1750	65	10	27	42130	\$3.50		\$147,453.70	Ramp NE Quad
2205	92	10	27	53083	\$3.50		\$185,791.67	Ramp NW Quad
1985	65	10	27	47787	\$3.50		\$167,254.63	Ramp SE Quad
1690	92	10	27	40685	\$3.50		\$142,398.15	Ramp SW Quad
1250	125	10	27	57870	\$3.50		\$202,546.30	Conn. To SR 22 (North)
2950	100	10	27	109259	\$3.50		\$382,407.41	Conn. To SR 22 (South)
11,830						Total	\$1,227,851.85	
tacmound to co coc	lowond							
ZUZ-US.U1 FAVEINENT REINOVAI	Kemovai							
Area (sf)		st/sy		Cost (\$/sy)				
102916		თ		\$3.75		Total	\$42,881.67	
Drainage								
Bedding 204-07		Length (ft) 700		cy/ft 0.266		Cost (\$/cy) \$30.00	\$186.20	
Pipe		Length (ft)		Cost (\$/ft)				
607-05.02		200		\$40.00			\$28,000.00	
Headwall Steel 611-07.02		lbs/wall 172		# H'walls 14		Cost (\$/lb) \$1.30	\$3,130.40	
Day Hewbeet		llew/yo		sllew'H #		Cost (\$/07)		
611-07.01		1.52		# IT walls 14		\$480.00	\$10,214.40	
						Total	\$41,531.00	
New Structure								
Length (ft.)	Width (ft.)	s.f.			Cost/s.f.		Total	
371 306	92 32	34132 9792			\$150.00 \$10.00	Total	\$5,119,800.00 \$97,920.00 \$5,217,720.00	Remove old bridge

Total

Paving												
Damp Conc Dym't	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)	/	factor	Mass (lbs/cy)	Total cy or sy	lbs/Tons	Total Tons	Cost (\$/ton or cy)		Total
501-01.02 503-01.02	135691		0.75	/	27		3769.19			\$50.00	₩	188,460
313-03	135691		0.330	/	ō		4975.34			\$10.00	₩	49,753
Kamp base stone 303-01	135691		0.330	/	27	2.03			3366.64	\$13.50	\$	45,450
F.C. and 1.C. 402-01 402-02	135691 135691				o o	0.35		231 2000	22.84 90.46	\$375.00 \$15.00	ss ss	8,566 1,357
501-01.02 313-03	15990 15990	ပ ပ	0.75		27		444.17 586.30			\$50.00	\$\ \ \ \	22,208 5,863
303-01 303-01 303-01	15990 15990 15990	6 2 5.57	0.25 1.30		27 27 27	2.03 2.03 2.03			300.55 1562.87 6696.32	\$13.50 \$13.50 \$13.50	••••	4,057 21,099 90,400
Conn. To SR 222 411-02.10 (Surf.) 307-02.08 (B-M2) 307-02.01 (Gr. 'A') 303-01 Outside Shld'r.	Lgth/Area (sq.ft.) 241031 241031 241031 241031 8300 8300	12 4 85	Depth (ft) 0.104 0.167 0.292 0.833 1.255	27 27 27 27	factor 3816 4068 4140 2.03 2.03	2000 2000 2000			Tons 1771 3032 5396 15096 9398	\$60.00 \$60.00 \$60.00 \$14.00	•••••••	106,285 181,940 323,753 211,338 131,572 47,245
411-01.07 ('E' Shldr.)	8300	10	0.125	27	3708	2000			712	\$60.00	•	42,745
Access Rd. to Pilot 411-02.10 (Surf.) 307-02.08 (B-M2) 307-02.01 (Gr. 'A') 303-01 Outside Shld'r.	000000	12 4.85 10	0.104 0.167 0.292 0.833 1.255 1.115	27 27 27 27 27 27	3816 4068 4140 2.03 2.03 3708	2000 2000 2000 2000			000000	\$60.00 \$60.00 \$60.00 \$14.00 \$14.00 \$60.00	~ ~ ~ ~ ~ ~ ~	

ESTIMATE BREAKDOWN AND QUANTITY SUMMARY	
ette County	

Concept 3

Topsoil (203-07)											
Based on 4:1 slope al Length (ft.)	Based on 4:1 slope and 10' fill with 48' widening Length (ft.) Slope Lgth.(ft.)	ning Thk.(ft.)	cy factor	cy	Cost (\$/cy)	Both Sides					
11,830	41.2	0.5	27	9025.9	\$9.00	2				Total	\$ 162,465
Seeding (801-01)											
Length (ft.)	Slope Lgth.(ft.)			sf	sf/unit	Both Sides	factor	units	Cost (\$/unit)		
11,830	41.2			487396	1,000	2	1.25	1218	\$35.00	Total	\$ 42,647
Signalization											
2 Signals										Total	\$ 250,000
Fencing											
Length (ft.)	707-02.01				Cost (\$/ft)						
4730					\$17.00					Total	\$ 80,410
Guardrail											
		(Length (ft) 3000		Cost (\$/ft) \$17.50		(# Anch.) 10		Cost (\$/Anch.) \$2,500.00			
				\$52,500.00				\$25,000.00		Total	\$77,500.00

New Interchange Cost Estimate Summary

ITEM			COST		
Clear & Grubbing:		\$7,296	=	\$7,000	\$7,000
Earthwork:		\$1,157,593	=	\$1,158,000	\$1,165,000
Pavement Removal:		\$2,631	=	\$3,000	\$1,168,000
Erosion Control:		\$334,000	=	\$334,000	\$1,502,000
Drainage:		\$26,199	=	\$26,000	\$1,528,000
Structures:		\$6,211,070	=	\$6,211,000	\$7,739,000
Railroad:		\$0	=	\$0	\$7,739,000
Paving:		\$1,272,243	=	\$1,272,000	\$9,011,000
Retaining Walls:		\$0	=	\$0	\$9,011,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$9,261,000
Topsoil:		\$156,766	=	\$157,000	\$9,418,000
Seeding:		\$41,151	=	\$41,000	\$9,459,000
Sodding:		\$50,000	=	\$50,000	\$9,509,000
Signing:		\$200,000	=	\$200,000	\$9,709,000
Signalization:		\$250,000	=	\$250,000	\$9,959,000
Fencing:		\$10,914	=	\$11,000	\$9,970,000
Guardrail:		\$77,500	=	\$78,000	\$10,048,000
Rip-Rap:		\$25,000	=	\$25,000	\$10,073,000
Other Construction:		\$383,629	=	\$384,000	\$10,457,000
Sub-Total:		\$10,455,992	=	\$10,456,000	\$10,457,000
10% Eng. & Cont.:		\$1,045,599	=	\$1,046,000	\$1,046,000
Sub-Total:		\$11,501,591	=	\$11,502,000	\$11,503,000
Total Construction Cost :	Sub-Total	+	Mobil.		
	\$11,503,000	+	\$483,000	=	\$11,986,000
			10% Prel. En	a.	
	\$11,986,000	+	\$1,046,000	=	\$13,032,000
	Row Total	+	Utility Total	+	Constr. Total
	\$336,000	+	\$450,000	+	\$13,032,000
TOTAL SECTION COST :	,		. ,		\$13,818,000
TOTAL SECTION COST.					\$13,616,000
Mobilization Table					
\$0 to \$1,000,000	5%				\$ -
\$1,000,000 to \$5,000,000	\$50,000 + 4.5%	over \$1,000,0	000		\$ -
\$5,000,000 to \$10,000,000	\$230,000 + 4%				\$ -
\$10,000,000 to \$20,000,000					\$ - \$ - \$ - \$ 483,000
\$20,000,000 +	\$780,000 + 3%				\$ -

			to Pilot and Deerfield					North of I-40 South of I-40	
	Total	North of I-40 South of I-40	71,000 - Additional damages to Pilot and Deerfield	321,000 (Rounded) 15,000 - -	336,000		- Ramp NE - Ramp NW - Ramp SW	- Ramp SE 2,475 Conn. To SR 222 4,821 Conn. To SR 222	7,296
	Ţ			•••••	↔		•••• •	••••	⇔
	Land Cost	\$ 14,167.49 \$ 56,539.85	\$ 70,707.35	11 11 11	II				Total
	Improvements (1.2 factor)		· «	Per Tract for Incid Per Unit Per Unit		Cost (\$/ac.)	\$2,500 \$2,500 \$2,500	\$2,500 \$2,500 \$2,500	
	Cost (\$/Acre)*1.2 factor	\$ 13,000.00 \$ 13,000.00		\$ 3,000 \$ 12,000 \$ 25,000		ear. and Grub.) Acres	0.000	0.000 0.990 1.928	
	Acres	1.090 4.349	5.439	×××		ush and Trees (Clo Area (sq.ft./ac.)	000	0 43125 84000	
	Area (sf)	47,472 189,452		ement Costs 5 0 0		and Disposal of Br Width (ft.)(Avg.)	75 75 75	75 75 120	
Right of Way Cost	Parcel		Sub-Total Cost of Bldgs. Contengenices	Total Land & Improvement Costs Incidentals Replacement Housir Moving Expenses	TOTAL ROW COSTS	201-07.05 Removal and Disposal of Brush and Trees (Clear. and Grub.) Length (ft.) Width (ft.)(Avg.) Area (sq.ft./ac.) Acres	000	0 575 700	

Majntonanco of Traffic					
Drums (Ea.) Cost (\$/drum) Signs (s.f.) Cost (\$/s.f.)		Total			
712-06					
712-02.02 Interconnected Portable Barrier Rail Lgth.(ft.) Cost (\$/ft.)	r Rail				
712-07.03 Temporary Barricades Lgth.(ft.)		Total Lgth. Cost (\$/ft)			
Total Maintenance of Traffic					\$ 250,000
Signing					
Signs (s.f.) Cost (\$/s.f.)		Total 713-13.03			\$ 200,000
Utility Relocation Cost					
Lgth (ft)	No. of Poles		Cost (\$/pole)	Cost (\$/ft)	
6" Water 1500				\$50.00	\$75,000 \$0
Utility Poles 6" Gas	25		\$15,000.00	\$30.00	\$375,000 \$0
				Total	\$450,000.00

203-01 Road and Drain. Exc. (Uncl.)	in. Exc. (Uncl.)							
Length (ft.)	Width (ft.)	Avg. Exc. Depth	Factor	C.Y.	Cost/cy		Total	
1430	65	10	27	34426	\$3.50		\$120,490.74	Ramp NE
2130	92	10	27	51278	\$3.50		\$179,472.22	Ramp NW
1475	92	10	27	35509	\$3.50		\$124,282.41	Ramp SW
2065	92	10	27	49713	\$3.50		\$173,995.37	Ramp SE
4315	100	10	27	159815	\$3.50		\$559,351.85	Conn. To SR 222
11,415						Total	\$1,157,592.59	
202-03.01 Pavement Removal	Removal							
Area (sf)		sf/sy		Cost (\$/sy)				
6314		တ		\$3.75		Total	\$2,630.83	
<u>Drainage</u>								
Bedding 204-07		Length (ft) 300		cy/ft 0.266		Cost (\$/cy) \$30.00	\$79.80	
Pipe 607-05.02		Length (ft) 300		Cost (\$/ft) \$40.00			\$12,000.00	Note: Based on 24" concrete pipe @
Headwall Steel 611-07.02		lbs/wall 172		# H'walls 6		Cost (\$/lb) \$1.30	\$1,341.60	100 per pipe (3 pipes)
Headwall Conc. 611-07.01		cy/wall 1.52		# H'walls 6		Cost (\$/cy) \$480.00	\$4,377.60	
Catchbasins	4				\$2,100.00		\$8,400.00	
						Total	\$26,199.00	
New Structure								
Length (ft.)	Width (ft.)	s.f.			Cost/s.f.		Total	
306 306 785	106 32	32436 9792			\$187.50 \$10.00 \$40.00		\$6,081,750.00 \$97,920.00 \$31,400.00	25% Increase in cost due to being built under traffic Remove existing bridge Barrier Wall
						Total	\$6,211,070.00	

Total

Fayette County

Paving												
	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)	/	factor	Mass (lbs/cy)	Total cy or sy	suo_/sql	Total Tons	Cost (\$/ton or cy)		Total
Ramp Conc. Pvm't.												
501-01.02	89372		0.75	_	27		2482.56			\$50.00	\$	124,128
Ramp Treated Base												
313-03	89372		0.330	_	6		3276.97			\$10.00	69	32,770
Ramp Base Stone												
303-01	89372		0.330	_	27	2.03			2217.42	\$13.50	⇔	29,935
P.C. and T.C.												
402-01	89372				6	0.35		231	15.05	\$375.00	⇔	5,642
402-02	89372				6	12		2000	59.58	\$15.00	⇔	894
Outside Shld'r.												
501-01.02	14200	2	0.75	_	27		394.44			\$50.00	⇔	19,722
313-03	14200	2	0.330	_	6		520.67			\$10.00	⇔	5,207
303-01	14200	2	0.25	_	27	2.03			266.91	\$13.50	⇔	3,603
303-01	14200	2	1.30	_	27	2.03			1387.92	\$13.50	⇔	18,737
303-01	14200	5.57			27	2.03			5946.70	\$13.50	⇔	80,280
Conn. To SR 222	Lgth/Area (sq.ft.)		Depth (ft)		factor				Tons			
411-02.10 (Surf.)	211064		0.104	27	3816	2000			1551	\$60.00	⇔	93,071
307-02.08 (B-M2)	211064		0.167	27	4068	2000			2655	\$60.00	⇔	159,320
307-02.01 (Gr. 'A')	211064		0.292	27	4140	2000			4725	\$60.00	₩	283,501
303-01	211064		0.833	27	2.03				13219	\$14.00	₩	185,063
Outside ShId'r.	8630	12	1.255	27	2.03				9772	\$14.00	₩	136,803
	8630	4.85	1.115	27	2.03				3209	\$14.00	↔	49,123
411-01.07 ('E' Shldr.)	8630	10	0.125	27	3708	2000			741	\$60.00	\$	44,445

C-24

וא		
AND COANING SOMME		
E BREANDOWN		
ESIIMAI		

Concept 4

	Total \$ 156,766		Total \$ 41,151		Total \$ 250,000			Total \$ 10,914			Total \$77,500.00
		Cost (\$/unit)	\$35.00								
		units	1176							Cost (\$/Anch.) \$2,500.00	\$25,000.00
		factor	1.25								
Both Sides	2	Both Sides	2							(# Anch.) 10	
Cost (\$/cv)	\$9.00	sf/unit	1,000				Cost (\$/ft)	\$17.00			
٥٥	8709.2	Sf	470298							Cost (\$/ft) \$17.50	\$52,500.00
cv factor	27										
lening Thk (#)	0.5									(Length (ft) 3000	
Topsoil (203-07) Based on 4:1 slope and 10' fill with 48' widening Length (ft.) Slope I ath (ft.)	41.2	Slope Lgth.(ft.)	41.2				707-02.01				
Topsoil (203-07) Based on 4:1 slope a	11,415	Seeding (801-01) Length (ft.)	11,415	Signalization	2 Signals at Ramps	Fencing	Length (ft.)	642	Guardrail		

New Interchange Cost Estimate Summary

ITEM			COST		
Clear & Grubbing:		\$2,705	=	\$3,000	\$3,000
Earthwork:		\$514,267	=	\$514,000	\$517,000
Pavement Removal:		\$8,966	=	\$9,000	\$526,000
Erosion Control:		\$318,000	=	\$318,000	\$844,000
Drainage:		\$41,898	=	\$42,000	\$886,000
Structures:		\$7,022,295	=	\$7,022,000	\$7,908,000
Railroad:		\$0	=	\$0	\$7,908,000
Paving:		\$801,602	=	\$802,000	\$8,710,000
Retaining Walls:		\$0	=	\$0	\$8,710,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$8,960,000
Topsoil:		\$90,475	=	\$90,000	\$9,050,000
Seeding:		\$23,750	=	\$24,000	\$9,074,000
Sodding:		\$50,000	=	\$50,000	\$9,124,000
Signing:		\$200,000	=	\$200,000	\$9,324,000
Signalization:		\$250,000	=	\$250,000	\$9,574,000
Fencing:		\$13,600	=	\$14,000	\$9,588,000
Guardrail:		\$77,500	=	\$78,000	\$9,666,000
Rip-Rap:		\$25,000	=	\$25,000	\$9,691,000
Other Construction:		\$264,276	=	\$264,000	\$9,955,000
Sub-Total:		\$9,954,334	=	\$9,954,000	\$9,955,000
10% Eng. & Cont.:		\$995,433	=	\$996,000	\$996,000
Sub-Total:		\$10,949,767	=	\$10,950,000	\$10,951,000
Total Construction Cost :	Sub-Total	+	Mobil.		
	\$10,951,000	+	\$463,000	=	\$11,414,000
			10% Prel. En	g.	
	\$11,414,000	+	\$996,000	=	\$12,410,000
	Row Total	+	Utility Total	+	Constr. Total
	\$294,000	+	\$450,000	+	\$12,410,000
TOTAL SECTION COST :					\$13,154,000
Mobilization Table					
\$0 to \$1,000,000	5%				\$ -
\$1,000,000 to \$5,000,000	\$50,000 + 4.5%	over \$1,000,0	000		\$ -
\$5,000,000 to \$10,000,000	\$230,000 + 4%				\$ -
\$10,000,000 to \$20,000,000					\$ - \$ - \$ 463,000
\$20,000,000 +	\$780,000 + 3%				\$ -

			to Pilot and Deerfield							North of I-40	South of I-40	
		North of I-40 South of I-40	- Additional damages	279,000 (Rounded) 15,000 - -	01		- Ramp NE	- Kamp NW - Ramp SW	- Ramp SE	5 Conn. To SR 222	230 Conn. 10 SR 222	5
	Total		250,000	279,000 15,000 -	294,000					2,475	3	2,705
	Land Cost	\$ 14,167.49 \$ 14,585.31	\$ 28,752.80 \$		45		69 (ss 	\$	69 6	A	Total \$
	Improvements (1.2 factor)			Per Tract for Incid Per Unit Per Unit		Cost (\$/ac.)	\$2,500	\$2,500 \$2,500	\$2,500	\$2,500	\$2,500	
	Cost (\$/Acre)*1.2 factor	\$ 13,000.00 \$ 13,000.00		\$ 3,000 \$ 12,000 \$ 25,000		Clear. and Grub.) Acres	0.000	0.000	0.000	0.990	0.092	
	Acres	1.090	2.212	×××		rush and Trees (C Area (sq.ft./ac.)	0	00	0	43125	4000	
	Area (sf)	47,472 48,872		ement Costs 5 0		and Disposal of B Width (ft.)(Avg.)	75	75 75	75	75	70	
Right of Way Cost	Parcel		Sub-Total Cost of Bldgs. Contengenices	Total Land & Improvement Costs Incidentals Replacement Housir Moving Expenses	TOTAL ROW COSTS	201-07.05 Removal and Disposal of Brush and Trees (Clear. and Grub.) Length (ft.) Width (ft.)(Avg.) Area (sq.ft./ac.) Acres	0	0 0	0	575	200	

Maintenance of Traffic					
Drums (Ea.) Cost (\$/drum) Signs (s.f.) Cost (\$/s.f.)	Total	tal			
712-06					
712-02.02 Interconnected Portable Barrier Rail Lgth.(ft.)	Rail				
712-07.03 Temporary Barricades Lgth.(ft.)	Total Lgth.	Lgth. Cost (\$/ft)			
Total Maintenance of Traffic				S	\$ 250,000
Signing					
Signs (s.f.) Cost (\$/s.f.)	Total	tal 713-13.03		∽	\$ 200,000
Utility Relocation Cost					
Lgth (ft)	No. of Poles		Cost (\$/pole)	Cost (\$/ft)	
6" Water 1500 12" Water				\$50.00	\$75,000 \$0
Utility Poles	25		\$15,000.00		\$375,000
6" Gas				\$30.00	80
				Total	\$450,000.00

203-01 Road and Drain. Exc. (Uncl.)	in. Exc. (Uncl.)							
Length (ft.)	Width (ft.)	Avg. Exc. Depth	Factor	C.Y.	Cost/cy		Total	
633	<u>გ</u>	10	27	15239	\$3.50		\$53 336 11	Ramp NF
340	8 G	2 €	27	8185	\$3.50		\$28,648.15	Samo NW
040	8 4	5 5	7 6	37077	\$3.50 \$3.50		£120 750 26	My dans
1975		2 (2	27	47546	\$3.50		\$166 412 04	Samo Sil
2100	20	10	27	38889	\$3.50		\$136,111.11	Conn. To SR 222
6,588						Total	\$514,266.67	
202-03.01 Pavement Removal	Removal							
Area (sf)		sf/sy		Cost (\$/sy)				
21519		6		\$3.75		Total	\$8,966.25	
<u>Drainage</u>								
Bedding 204-07		Length (ft) 600		cy/ft 0.266		Cost (\$/cy) \$30.00	\$159.60	
Pipe 607-05.02		Length (ft) 600		Cost (\$/ft) \$40.00			\$24,000.00	Note: Based on 24" concrete pipe @
Headwall Steel 611-07.02		lbs/wall 172		# H'walls 12		Cost (\$/lb) \$1.30	\$2,683.20	100' per pipe (6 pipes)
Headwall Conc. 611-07.01		cy/wall 1.52		# H'walls 12		Cost (\$/cy) \$480.00	\$8,755.20	
Catchbasins	က				\$2,100.00		\$6,300.00	
						Total	\$41,898.00	
New Structure								
Length (ft.)	Width (ft.)	s.f.	Height (ft.)		Cost/s.f.		Total	
306 306 900	32	25704 9792 9000	10		\$187.50 \$10.00 \$100.00		\$6,024,375.00 \$97,920.00 \$900,000.00	25% Increase in cost due to being built under traffic Remove existing bridge Retaining Wall along I-40
						Total	\$7,022,295.00	

Paving													
	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)	/	factor	Mass	Mass (lbs/cy)	Total cy or sy	suo1/sql	Total Tons	Cost (\$/ton or cy)	Total	tal
Ramp Conc. Pvm't.													
501-01.02	60939		0.75	_	27			1684.42			\$50.00	s	84,221
Ramp Treated Base													
313-03	60939		0.330	_	6			2223.43			\$10.00	s	22,234
Ramp Base Stone													
303-01	60939		0.330	_	27	2	2.03			1504.52	\$13.50	\$	20,311
P.C. and T.C.													
402-01	60639				6	0	0.35		231	10.21	\$375.00	\$	3,828
402-02	60639				ග		12		2000	40.43	\$15.00	\$	909
Outside ShId'r.													
501-01.02	8976	2	0.75	_	27			249.33			\$50.00	\$	12,467
313-03	8976	2	0.330	_	6			329.12			\$10.00	⇔	3,291
303-01	8976	2	0.25	_	27	2	2.03			168.72	\$13.50	\$	2,278
303-01	8976	2	1.30	_	27	2	2.03			877.32	\$13.50	\$	11,844
303-01	8976	5.57			27	2	03			3758.98	\$13.50	⇔	50,746
Conn. To SR 222	Lgth/Area (sq.ft.)		Depth (ft)		factor					Tons			
411-02.10 (Surf.)	139838		0.104	27	3816	2000				1028	\$60.00	s	61,663
307-02.08 (B-M2)	139838		0.167	27	4068	2000				1759	\$60.00	\$	105,555
307-02.01 (Gr. 'A')	139838		0.292	27	4140	2000				3131	\$60.00	& _	187,830
303-01	139838		0.833	27	2.03					8758	\$14.00	\$	122,611
Outside Shld'r.	4200	12	1.255	27	2.03					4756	\$14.00	⇔	66,579
	4200	4.85	1.115	27	2.03					1708	\$14.00	⇔	23,907
411-01.07 ('E' Shldr.)	4200	10	0.125	27	3708	2000				361	\$60.00	⇔	21,630

Total

QUANTITY SUMMARY
ESTIMATE BREAKDOWN AND
ш

		Total \$ 90,475			Total \$ 23,750		Total \$ 250,000			Total \$ 13,600			Total \$77,500.00
				units Cost (\$/unit)	339 \$35.00							Cost (\$/Anch.) \$2,500.00	\$25,000.00
				tactor	1.25 3							Cost (\$ \$2,5	\$25,0
	Both Sides	2	20170	Both Sides	2							(# Anch.) 10	
	Cost (\$/cy)	\$9.00	1, 1, 7 -	st/unit	1,000				Cost (\$/ft)	\$17.00			
	cy	5026.4	77	St	271426							Cost (\$/ft) \$17.50	\$52,500.00
	cy factor	27											
	dening Thk.(ft.)	0.5										(Length (ft) 3000	
	Based on 4:1 slope and 10' fill with 48' widening Length (ft.) Slope Lgth.(ft.) Thk.(ft.)	41.2	(1) 10 10 10 10	Slope Lgth.(ft.)	41.2				707-02.01				
Topsoil (203-07)	Based on 4:1 slope Length (ft.)	6,588	Seeding (801-01)	Length (ft.)	6,588	Signalization	2 Signals at Ramps	Fencing	Length (ft.)	800	Guardrail		

New Interchange Cost Estimate Summary

ITEM			COST		
Clear & Grubbing:		\$73,020	=	\$73,000	\$73,000
Earthwork:		\$1,290,981	=	\$1,291,000	\$1,364,000
Pavement Removal:		\$30,685	=	\$31,000	\$1,395,000
Erosion Control:		\$292,000	=	\$292,000	\$1,687,000
Drainage:		\$47,464	=	\$47,000	\$1,734,000
Structures:		\$4,533,120	=	\$4,533,000	\$6,267,000
Railroad:		\$0	=	\$0	\$6,267,000
Paving:		\$1,340,291	=	\$1,340,000	\$7,607,000
Retaining Walls:		\$0	=	\$0	\$7,607,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$7,857,000
Topsoil:		\$168,783	=	\$169,000	\$8,026,000
Seeding:		\$44,305	=	\$44,000	\$8,070,000
Sodding:		\$25,000	=	\$25,000	\$8,095,000
Signing:		\$200,000	=	\$200,000	\$8,295,000
Signalization:		\$250,000	=	\$250,000	\$8,545,000
Fencing:		\$68,510	=	\$69,000	\$8,614,000
Guardrail:		\$51,250	=	\$51,000	\$8,665,000
Rip-Rap:		\$25,000	=	\$25,000	\$8,690,000
Other Construction:		\$413,229	=	\$413,000	\$9,103,000
Sub-Total:		\$9,103,639	=	\$9,104,000	\$9,103,000
10% Eng. & Cont.:		\$910,364	=	\$910,000	\$910,000
Sub-Total:		\$10,014,003	=	\$10,014,000	\$10,013,000
Total Construction Cost :	Sub-Total	+	Mobil.		
	\$10,013,000	+	\$430,000	=	\$10,443,000
			10% Prel. En	q.	
	\$10,443,000	+	\$910,000	=	\$11,353,000
	Row Total	+	Utility Total	+	Constr. Total
	\$381,000	+	\$150,000	+	\$11,353,000
TOTAL SECTION COST :					\$11,884,000
Mobilization Table	E0/				c
\$0 to \$1,000,000	5%		00		5 -
\$1,000,000 to \$5,000,000	\$50,000 + 4.5%				\$ - \$ - \$ - \$ 430,000
\$5,000,000 to \$10,000,000	\$230,000 + 4%				ф -
\$10,000,000 to \$20,000,000					\$ 430,000
\$20,000,000 +	\$780,000 + 3%	over \$20,000,0	JUU		\$ -

	North of I-40 South of I-40		Rounded)					
Total		360,000	360,000 (Rounded)	21,000	•	•	381,000	
•	4. 6.	\$	⇔	⇔	⇔	\$	\$	
Land Cost	\$ 145,018.34 \$ 214,762.63	\$ 359,780.97	II	II	II	П	II	
Improvements (1.2 factor)	<i>s</i> , <i>s</i> ,	-		3,000 Per Tract for Incide	er Unit	er Unit		
1.2	\$ 13,000.00 \$ 13,000.00	\$		3,000 Pe	12,000 Per Unit	25,000 Per Unit		drub.)
Cost (\$/Acre)** factor	\$ 13,0 13,0			↔	` \$	\$		lear. and
Acres	11.155 16.520	27.675		×	×	X		sh and Trees (C
Area (sf)	485,923 719,620		ent Costs	7	0	0		Disposal of Bru
Parcel		Sub-Total Cost of Bldgs. Contengenices	Total Land & Improvement Costs	Incidentals	Replacement Housir	Moving Expenses	TOTAL ROW COSTS	201-07.05 Removal and Disposal of Brush and Trees (Clear. and Grub.)

Maintenance of Traffic						
Drums (Ea.) Cost (\$/drum) Signs (s.f.) Cost (\$/s.f.)	Total	tal				
712-06						
712-02.02 Interconnected Portable Barrier Rail Lgth.(ft.)	ər Rail					
712-07.03 Temporary Barricades Lgth.(ft.)	Total	Total Lgth. Cost (\$/ft)				
Total Maintenance of Traffic					\$ 250,000	
Signing						
Signs (s.f.) Cost (\$/s.f.)	To	Total 713-13.03			\$ 200,000	
Utility Relocation Cost						
Lgth (ft)	No. of Poles		Cost (\$/pole)	Cost (\$/ft)		
6" Water 0 12" Water				\$50.00	0\$	
Utility Poles 6" Gas	10		\$15,000.00	\$30.00	\$150,000 \$0	
				Total	\$150,000.00	

										Note: Based on 24" concrete pipe @	pipes)					
	Ramp NE Quad Ramp NW Quad	Ramp SW Quad	Conn. To SR 222							Note: Based or	100' per pipe (8 pipes)					1-40 Bridge
Total	\$131,444.44	\$113,750.00	\$729,814.81	\$1,290,981.48			\$30,685.42		\$212.80	\$32,000.00	\$3,577.60	\$11,673.60	\$47,464.00		Total	¢4 425 200 00
				Total			Total		Cost (\$/cy) \$30.00		Cost (\$/lb) \$1.30	Cost (\$/cy) \$480.00	Total			
Cost/cy	\$3.50	\$3.50	\$3.50												Cost/s.f.	045000
C.Y.	37556 34426	32500	208519			Cost (\$/sy)	\$3.75		cy/ft 0.266	Cost (\$/ft) \$40.00	# H'walls 16	# H'walls 16			Cost/I.f.	
Factor	27	27	27													
Avg. Exc. Depth	10	2 6 6	2 0			sf/sy	O		Length (ft) 800	Length (ft) 800	lbs/wall 172	cy/wall 1.52			s.f.	20560
in. Exc. (Uncl.) Width (ft.)	65 65	65 65	100		Removal										Width (ft.)	0
203-01 Road and Drain. Exc. (Uncl.) Length (ft.) Width (ft.)	1560 1430	1350	2320 5630	12,290	202-03.01 Pavement Removal	Area (sf)	73645	Drainage	Bedding 204-07	Pipe 607-05.02	Headwall Steel 611-07.02	Headwall Conc. 611-07.01		New Structure	Length (ft.)	338

Paving												
	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)	/	factor	Mass (lbs/cy)	Total cy or sy	lbs/Tons	Total Tons	Cost (\$/ton or cy)	Tc	Total
Ramp Conc. Pvm't.												
501-01.02	90424		0.75	_	27		2511.78			\$50.00	€	125,589
Ramp Treated Base												
313-03	90424		0.330	_	6		3315.55			\$10.00	↔	33,155
Ramp Base Stone												
303-01	90424		0.330	_	27	2.03			2243.52	\$13.50	⇔	30,288
P.C. and T.C.												
402-01	90424				6	0.35		231	15.22	\$375.00	⇔	6,709
402-02	90424				6	12		2000	60.28	\$15.00	⇔	904
Outside Shld'r.												
501-01.02	13320	2	0.75	_	27		370.00			\$50.00	⇔	18,500
313-03	13320	2	0.330	_	6		488.40			\$10.00	⇔	4,884
303-01	13320	2	0.25	_	27	2.03			250.37	\$13.50	⇔	3,380
303-01	13320	2	1.30	_	27	2.03			1301.91	\$13.50	⇔	17,576
303-01	13320	5.57			27	2.03			5578.17	\$13.50	⇔	75,305
Conn. To SR 222	Lgth/Area (sq.ft.)		Depth (ft)		factor				Tons			
411-02.10 (Surf.)	212080		0.104	27	3816	2000			1559	\$60.00	⇔	93,519
307-02.08 (B-M2)	212080		0.167	27	4068	2000			2668	\$60.00	∨	980,091
307-02.01 (Gr. 'A')	212080		0.292	27	4140	2000			4748	\$60.00	₩	284,866
303-01	212080		0.833	27	2.03				13282	\$14.00	⇔	185,954
Outside ShId'r.	11260	12	1.255	27	2.03				12750	\$14.00	⇔	178,494
	11260	4.85	1.115	27	2.03				4578	\$14.00	⇔	64,094
411-01.07 ('E' Shldr.)	11260	10	0.125	27	3708	2000			996	\$60.00	⇔	57,989

_ _	

Concept 6

Topsoil (203-07)												
Based on 4:1 slope a Length (ft.)	Based on 4:1 slope and 10' fill with 48' widening Length (ft.) Slope Lgth.(ft.) Th	ening Thk.(ft.)	cy factor	cy	Cost (\$/cy)	Both Sides						
12,290	41.2	0.5	27	9376.8	\$9.00	2				Total	₩	168,783
Seeding (801-01)												
Length (ft.)	Slope Lgth.(ft.)			sf	sf/unit	Both Sides	factor	nnits	Cost (\$/unit)			
12,290	41.2			506348	1,000	2	1.25	1266	\$35.00	Total	↔	44,305
Signalization												
2 Signals at Ramps										Total	\$	250,000
Fencing												
Length (ft.)	707-02.01				Cost (\$/ft)							
4030					\$17.00					Total	↔	68,510
Guardrail												
		(Length (ft) 1500		Cost (\$/ft) \$17.50		(# Anch.) 10		Cost (\$/Anch.) \$2,500.00				
				\$26,250.00				\$25,000.00		Total		\$51,250.00

APPENDIX D HIGHWAY CAPACITY ANALYSIS OUTPUT FILES

Freeway Mainline Segments Highway Capacity Software Computer Printouts

HCS+TM Version 5.4

Generated: 4/20/2011 8:14 AM

HCS+TM Version 5.4

Generated: 4/20/2011 8:16 AM

HCS+TM Version 5.4

Generated: 4/20/2011 8:17 AM

HCS+TM Version 5.4

HCS+TM Version 5.4

Generated: 4/20/2011 8:19 AM

HCS+TM Version 5.4

Generated: 4/20/2011 8:19 AM

HCS+TM Version 5.4

HCS+TM Version 5.4

Generated: 4/20/2011 8:21 AM

HCS+TM Version 5.4

HCS+TM Version 5.4

Generated: 4/20/2011 8:22 AM

HCS+TM Version 5.4

Generated: 4/20/2011 8:23 AM

HCS+TM Version 5.4

HCS+TM Version 5.4

Generated: 4/20/2011 8:25 AM

HCS+TM Version 5.4

Generated: 4/20/2011 8:26 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:49 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:40 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:41 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:42 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:44 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:45 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:46 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:49 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:50 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:50 AM

HCS+TM Version 5.4

Generated: 4/20/2011 9:51 AM

Merge Ramps Highway Capacity Software Computer Printouts

RAMPS AN	D RAMP JUNG	CTIONS W	ORKSHE	EET					
SKB	Fre			I-40 EB					
		,							
04/18/2011		risdiction							
AM Peak Period	An	alysis Year							
Terrain: Le	vel					Downstre Ramp	am Adj		
						✓ Yes	☐ On		
						□ No	✓ Off		
						L _{down} =	2000 ft		
	$S_{FF} = 70.0 \text{ mph}$		$S_{FR} = 3$	35.0 mph		\/ _	104 l- /l-		
	Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			v _D =	184 veh/h		
Under Base	Conditions					•			
I DUL	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PHI	F x f _{HV} x f _p		
	Level	25	0	0.889	1.00		2871		
0.90	Level	3	0	0.985	1.00		227		
	Level	3	0	0.985	1.00		208		
Merge Areas	S				Diverge Areas	S			
			Estimati	ion of v ₁₂					
= V _E (P _{EM})				V ₁₂	= V _D + (V _E - \	/ _B)P _{ED}			
	or 25-3)		L ₅₀ =	12			9)		
•	·		l_				•		
-	ation (Exhibit 20-0)					quation (Exhibit 25-12)			
•					•				
	n 25-4 or 25-5)						5-16)		
Tyes 🗹 No									
TYes ✓ No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
pc/h (Equation :	25-8)		If Yes, V _{12a} =	:	pc/h (Equat	ion 25-18)			
			Capacit	v Checks					
ual	Capacity	LOS F?		1	al C	apacity	LOS F?		
			V _F						
98 Exhibit 25-	7	No	$V_{FO} = V_{F}$	- V _D	Exhibit 25	-14			
				K			_		
	1		<u>. '` </u>	. (D/-					
		Violetiana	riow En						
	1	i e	V	Actual	7	sirable	Violation?		
		110	·	Service I		ion (if no)		
			1			•	,, i j		
R + 0.00/0 V ₁₂ -	0.00027 L _A				0.0000 V ₁₂ -	o.ooa LD			
				•					
			<u> </u>		4! - ·-				
					tion				
1			1	•	10)				
	S _R = 59.6 mph (Exhibit 25-19)								
5-19)			I "	•					
5-19) 5-19)			I "	ph (Exhibit 25-1 ph (Exhibit 25-1					
	SKB TDOT/TranSyster 04/18/2011 AM Peak Period Conditions Terrain: Le Terrain: Le	SKB From TDOT/TranSystems Ju 04/18/2011 Ju AM Peak Period An Conditions Terrain: Level Terrain: Level Terrain: Level Terrain 7 0.90 Level 1 0.90 Level 1 0.90 Level 2 0.90 Level 4 0.90 Level Merge Areas 2 = V _F (P _{FM}) (Equation 25-2 or 25-3) .000 using Equation (Exhibit 25-5) 1871 pc/h 19 pc/h (Equation 25-4 or 25-5) 19 Yes No 19 No 19 No 19 Period Area 10 Under Base Conditions Terrain Terrain	SKB Freeway/Dir of Tr Junction O4/18/2011	SKB Freeway/Dir of Travel Junction Junisdiction AM Peak Period Analysis Year Terrain: Level	SKB	Site Information SKB	Site Information SKB		

AMPS AND	RAMP JUNC	CTIONS W	ORKSHI	EET				
В				I-40 EB				
		•						
18/2011		risdiction			٧			
l Peak Period	An	alysis Year			,			
ditions								
Terrain: Leve	I						am Adj	
						✓ Yes	☐ On	
						□ No	✓ Off	
						L _{down} =	2000 ft	
S	FF = 70.0 mph		$S_{FR} = 3$	35.0 mph		\/ _	220 l. /l-	
	Sketch (s	show lanes, L _A	L_{D}, V_{R}, V_{f}			v _D =	239 veh/h	
nder Base (Conditions							
PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p	
0.90	Level	25	0	0.889	1.00	1	2455	
0.90	Level	3	0	0.985	1.00		176	
1								
0.90	Level	3	0	0.985	1.00		270	
Merge Areas						S		
			Estimat	ion of v ₁₂				
/ _E (P _{EM})			1	V ₄₀	= V _D + (V _F - V	V _D)P _{ED}		
	25-3)		L _{FO} =	12			9)	
	•		L		· ·		•	
	IOTT (LXIIINILZD-0)					quation (Exhibit 25-12)		
-					•			
	25-4 or 25-5)						5-16)	
'es 🗹 No			Is V ₃ or V _{av}	₃₄ > 1.5 * V ₁₂ /2	☐ Yes ☐ N	٧o		
n (Equation 25	-8)		If Yes,V _{12a} =	=	pc/h (Equa	tion 25-18)		
			Capacit	y Checks				
С	apacity	LOS F?		ı ı	ıal (Capacity	LOS F?	
			V _F					
Exhibit 25-7		No		- V _D	Exhibit 2!	5-14		
				K				
Influence A	<u> </u>	<u> </u>	<u> </u>	toring Di				
		Violetian?	riow En					
			V	ACIUAI	_		Violation?	
		110	->	f Sarvice !)	
						•	,, i j	
- 0.0070 V ₁₂ - 0.0	JUUZI LA				- 0.0000 V ₁₂ -	o.oos LD		
				,				
			<u> </u>		41			
					tion			
			$D_{s} = (E$	•				
		S _R = 60.5 mph (Exhibit 25-19)						
')			'`	ph (Exhibit 25-				
)))			1 ''	ph (Exhibit 25- ph (Exhibit 25-				
	B OT/TranSystems /18/2011 1 Peak Period ditions Terrain: Leve S Terrain: Leve PHF 0.90 0.90 0.90 0.90 Merge Areas (F (P _{FM}) Juation 25-2 or using Equation pc/h (Ch (Equation 25) (F S No (F S N	B Free OT/TranSystems Jun /18/2011 Jun /1 Peak Period An iditions Terrain: Level	Site Infor B Freeway/Dir of Tr OT/TranSystems Junction (18/2011 Jurisdiction In Peak Period Analysis Year Inditions Terrain: Level	Site Information Freeway/Dir of Travel OT/TranSystems Junction Jurisdiction Peak Period Analysis Year dittions	Freeway/Dir of Travel	Site Information B	Site Information B	

	RAI	MPS AND	RAMP JUNC	CTIONS W	ORKSH	EET					
General Infor				Site Infor							
Analyst	SKB		Fre	eway/Dir of Tr	avel	I-40 WB					
Agency or Company		T/TranSystems		nction		Exit 35					
Date Performed	04/18	-		isdiction		Fayette Cour	nty				
Analysis Time Period	AM P	eak Period	Ana	alysis Year		2014	,				
Project Description											
Inputs											
Upstream Adj Ramp		Terrain: Leve	l					Downstre Ramp	eam Adj		
☐ Yes ☐ On								✓ Yes	☐ On		
✓ No								□ No	✓ Off		
L _{up} = ft								L _{down} =	2000 ft		
		S	_{FF} = 70.0 mph		S _{FR} = 3	35.0 mph					
$V_u = veh/h$			Sketch (s	how lanes, L _A ,	$L_{D_f}V_{D_f}V_f$			$V_D =$	126 veh/h		
Conversion to	pc/h Und	der Base (A	DKF						
	V			%Truck	0/ Dv	f	f f	V – V/DH	Evf vf		
(pc/h)	(Veh/hr)	PHF	Terrain	% ITUCK	%Rv	f _{HV}	f _p		F x f _{HV} x f _p		
Freeway	1976	0.90	Level	25	0	0.889	1.00		2470		
Ramp	274	0.90	Level	3	0	0.985	1.00		309		
UpStream					ļ	<u> </u>					
DownStream	126	0.90	Level	3	0	0.985	1.00		142		
		Merge Areas			ļ		Diverge Area	as			
Estimation of	V ₁₂				∟stimat	ion of v ₁	2				
	V ₁₂ = V _F	(P _{FM})				V.	$V_{12} = V_R + (V_F -$	$V_R)P_{FD}$			
L _{EQ} =		ation 25-2 or	25-3)		L _{EQ} =			25-8 or 25-	9)		
P _{FM} =			ion (Exhibit 25-5)		I_		using Equa		· ·		
			IOIT (EXHIBIT 25-5)		P _{FD} =			446.10 11 (271.1121)			
V ₁₂ =	2470 r				V ₁₂ =		pc/h	05.45	()		
V_3 or V_{av34}			25-4 or 25-5)		V ₃ or V _{av34}			on 25-15 or 2	b-16)		
Is V_3 or $V_{av34} > 2,700$					Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No						
Is V_3 or $V_{av34} > 1.5$ *	V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	$v_{34} > 1.5 * V_{12}$	/2 ☐ Yes ☐ I	No			
If Yes,V _{12a} =	pc/h ((Equation 25	5-8)		If Yes,V _{12a} =	=	pc/h (Equa	ation 25-18))		
Capacity Che	cks				Capacit	y Check	 S				
	Actual	С	apacity	LOS F?	1		1	Capacity	LOS F?		
			1 7		V _F		Exhibit 2				
V _{FO}	2779	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V-	Exhibit 2				
FO		EXTIBIT 20 /		140		· K					
	<u> </u>	<u> </u>			V _R	<u> </u>	Exhibit 2				
Flow Entering				1012 5	Flow Er		iverge Influ				
	Actual		Desirable	Violation?	<u> </u>	Actual	_	esirable	Violation?		
V _{R12}	2779	Exhibit 25-7	4600:AII	No	V ₁₂		Exhibit 25-1				
Level of Serv					1		Determina	•	ot F)		
$D_R = 5.475 +$	$0.00734 \text{ V}_{R} + 0$	0.0078 V ₁₂ - 0.0	00627 L _A			$D_R = 4.252$	2 + 0.0086 V ₁₂	- 0.009 L _D			
$D_{R} = 23.9 \text{ (pc/m)}$	i/ln)				$D_R = (p)$	oc/mi/ln)					
LOS = C (Exhibit 2	25-4)					Exhibit 25-4	l)				
Speed Detern					<u> </u>	Determin					
M _S = 0.349 (Exit					† '	Exhibit 25-19)					
	Exhibit 25-19)					ph (Exhibit 2!					
.,					S ₀ = mph (Exhibit 25-19)						
•	Exhibit 25-19)										
S = 60.2 mph (Exhibit 25-14)				S = m	ipn (Exnibit 2	D-15)				

Generated: 4/20/2011 10:06 AM

	RAI	MPS AND	RAMP JUNG	CTIONS V	VORKSHI	EET					
General Info				Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perio	SKB 7 TDO 04/18	T/TranSystems 3/2011 Peak Period	Fre Jui Jui	eeway/Dir of Tonction risdiction alysis Year	ravel	I-40 WE Exit 35 Fayette 2014	3 County				
Project Description	Existing Condit	tions									
Inputs									•		
Upstream Adj Ramp		Terrain: Leve	el						Downstre Ramp	eam Adj	
Yes O									✓ Yes	☐ On	
✓ No ☐ Of	Ħ.								□ No	✓ Off	
L _{up} = ft		S	_{FF} = 70.0 mph		S _{FR} = 3	35.0 mp	h		L _{down} =	2000 ft	
$V_u = veh/h$	า		• •	show lanes, L _A			$V_D =$	182 veh/h			
Conversion t	to pc/h Und	der Base									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	: HV	f _p	v = V/PH	F x f _{HV} x f _p	
Freeway	2306	0.90	Level	25	0	0.8	189	1.00		2883	
Ramp UpStream	177	0.90	Level	3	0	0.9	85	1.00	_	200	
DownStream	182	0.90	Level	3	0	0.9	85	1.00		205	
		Merge Areas						Diverge Are	as		
Estimation o	f v ₁₂				Estimat	ion o	f v ₁₂				
$L_{EQ} = P_{FM} = V_{12} = V_3 \text{ or } V_{av34} = 2,70$ Is V_3 or $V_{av34} > 2,70$ Is V_3 or $V_{av34} > 1.5$	$V_{12} = V_F (P_{FM})$ $L_{EQ} = $ (Equation 25-2 or 25-3) $P_{FM} = $ 1.000 using Equation (Exhibit 25-5) $V_{12} = $ 2883 pc/h						$V_{12} = V_{R} + (V_{F} - V_{R})P_{FD}$ $L_{EQ} = (Equation 25-8 \text{ or } 25-9)$ $P_{FD} = using Equation (Exhibit 25-12)$ $V_{12} = pc/h$ $V_{3} \text{ or } V_{av34} > 2,700 \text{ pc/h?} \text{ yes } \text{ No}$ $Is V_{3} \text{ or } V_{av34} > 1.5 * V_{12}/2 \text{ yes } \text{ No}$				
	· -		5-8)							1	
If Yes,V _{12a} = Capacity Che		(Lqualion 20)-0)		Capacit			pc/ii (Lqu	ation 25-18)		
Capacity Cite	Actual		apacity	LOS F?	Сарасп	y Circ	Actual		Capacity	LOS F?	
V _{FO}	3083	Exhibit 25-7		No	$V_F = V_F$ V_{R}	- V _R		Exhibit : Exhibit : Exhibit :	25-14 25-14		
Flow Enterin	g Merge In	fluence A	rea		Flow En	terin	g Dive	erge Influ	ience Are	ea	
	Actual	Max	Desirable	Violation?		А	ctual	Max D	esirable	Violation?	
V _{R12}	3083	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-1			
Level of Serv		<u>`</u>							tion (if n	ot F)	
$D_R = 5.475 + D_R = 26.3 \text{ (pc/n)}$ $D_R = C \text{ (Exhibit)}$	25-4)	0.0078 V ₁₂ - 0.0	00627 L _A		$D_R = (p)$	oc/mi/lr Exhibit	n) 25-4)		- 0.009 L _D		
$S_0 = N/A \text{ mph}$	ibit 25-19) (Exhibit 25-19) (Exhibit 25-19) (Exhibit 25-14)				$S_R = m$ $S_0 = m$	ph (Exh	5-19) ibit 25-19 ibit 25-19 ibit 25-15)			

Generated: 4/20/2011 10:07 AM

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSH	EET				
General Info				Site Infor						
Analyst	SKB		Fre	eeway/Dir of Tr	avel	I-40 E	3			
Agency or Compan	ny TDO	T/TranSystems	Jui	nction		Exit 35)			
Date Performed	04/18	3/2011	Jui	risdiction		Fayett	e County			
Analysis Time Peri	od AM F	Peak Period	An	alysis Year		2034				
Project Description	Existing Condi	tions								
Inputs		,								
Upstream Adj Ram		Terrain: Leve							Downstre Ramp	eam Adj
Yes C	On								✓ Yes	☐ On
™ No □ C	Off								□ No	✓ Off
$L_{up} = ft$									L _{down} =	2000 ft
V _u = veh/	/h	S	$_{FF} = 70.0 \text{ mph}$ Sketch (s	show lanes, L _A ,	$S_{FR} = 3$ $L_{D_f} V_{P_f} V_f$	35.0 m	oh		V _D =	274 veh/h
Conversion	to pc/h Und	der Base (D K I					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	3075	0.90	Level	25	0	0	889	1.00	1	3844
Ramp	237	0.90	Level	3	0	0	985	1.00	ĺ	267
UpStream	1				İ					
DownStream	274	0.90	Level	3	0	0	985	1.00		309
	•	Merge Areas				•	C	Diverge Areas	,	
Estimation o	of v ₁₂				Estimat	ion (of v ₁₂			
	V ₁₂ = V _F	(P _{EM})					V ₁₂ = '	V _R + (V _F - V	/ _B)P _{ED}	
L _{EQ} =	.= .	ation 25-2 or	25-3)		L _{EQ} =			Equation 2		9)
_	• •		ion (Exhibit 25-5)		P _{FD} =			using Equat		•
P _{FM} =			IOTT (EXTIIDIT 25-5)		1			oc/h	ion (Exhibit	23 12)
V ₁₂ =	3844				V ₁₂ =		•		05.45	- 4 ()
V_3 or V_{av34}	-		25-4 or 25-5)		V ₃ or V _{av34}	_		pc/h (Equation		0-16)
Is V_3 or $V_{av34} > 2.7$								Yes No		
Is V_3 or $V_{av34} > 1.5$	5 * V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	_{/34} > 1.	5 * V ₁₂ /2	Yes No	0	
f Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a} =	=	ŗ	oc/h (Equati	ion 25-18)	
Capacity Ch	ecks				Capacit					
	Actual	С	apacity	LOS F?			Actual	С	apacity	LOS F?
					V _F			Exhibit 25	-14	
V_{FO}	4111	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	-14	
					V_R			Exhibit 25	5-3	
Flow Enterir	ng Merge In	fluence A	rea		Flow Er	nterii	ng Dive	rge Influe	nce Are	ea
	Actual	Max	Desirable	Violation?			Actual	Max Des	sirable	Violation?
V_{R12}	4111	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
Level of Ser	vice Detern	nination (i	if not F)		·	f Ser	vice De	terminati	on (if no	ot F)
	+ 0.00734 v _R + 0	•						.0086 V ₁₂ -	_	
D _R = 34.3 (pc/	• • • • • • • • • • • • • • • • • • • •	12	Α.		1	oc/mi/			J	
_OS = D (Exhib					I		t 25-4)			
Speed Deter	•				Speed L			<u> </u>		
•	xibit 25-19)				' '	Exhibit				
	,				S_R = mph (Exhibit 25-19)					
-	n (Exhibit 25-19)									
S_0 = N/A mph (Exhibit 25-19) S = 55.3 mph (Exhibit 25-14)					T v v v v v v v v v v v v v v v v v v v					
S = 55.3 mpf		S = mph (Exhibit 25-15)								

Generated: 4/20/2011 10:07 AM

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSH	EET				
General Info				Site Infor						
Analyst	SKB			eeway/Dir of Tr		I-40 E	В			
Agency or Compan	ny TDO	T/TranSystems	Jui	nction		Exit 35	5			
Date Performed	04/18	3/2011	Jui	risdiction		Fayett	e County			
Analysis Time Peri	od PM F	Peak Period	An	alysis Year		2034				
Project Description	Existing Condi	tions								
Inputs		,								
Upstream Adj Ram	•	Terrain: Leve							Downstre Ramp	am Adj
☐ Yes ☐ C	On								✓ Yes	☐ On
™ No □ C	Off								□ No	✓ Off
$L_{up} = ft$									L _{down} =	2000 ft
V _u = veh	/h	S	FF = 70.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = 3$ L_{D}, V_{D}, V_{f}	35.0 m	ph		V _D =	355 veh/h
Conversion	to pc/h Und	der Base (D IX I					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	2807	0.90	Level	25	0	0	.889	1.00		3509
Ramp	204	0.90	Level	3	0	0	.985	1.00		230
UpStream										
DownStream	355	0.90	Level	3	0	0	.985	1.00		400
		Merge Areas					D	iverge Areas		
Estimation o	of v ₁₂				Estimat	ion (of v ₁₂			
	V ₁₂ = V _F	(P _{EM})					V ₄₂ = \	V _R + (V _F - V	' _D)P _{ED}	
l = 0 =		` ™' ation 25-2 or	25-3)		L _{EQ} =			Equation 2		a)
L _{EQ} = D _			•		L_			using Equat		•
P _{FM} =			ion (Exhibit 25-5)		P _{FD} =				IOII (EXIIIDII	20-12)
V ₁₂ =	3509				V ₁₂ =		•	oc/h		
V_3 or V_{av34}	=		25-4 or 25-5)		V_3 or V_{av34}			oc/h (Equation		5-16)
Is V_3 or $V_{av34} > 2.7$								Yes No		
Is V_3 or $V_{av34} > 1.5$	5 * V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	₃₄ > 1.	5 * V ₁₂ /2	Yes 🗆 No	0	
f Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes, V _{12a} =	=	ŗ	oc/h (Equati	on 25-18)	
Capacity Ch					Capacit					
	Actual	С	apacity	LOS F?			Actual	С	apacity	LOS F?
					V _F	Î		Exhibit 25	-14	
V_{FO}	3739	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 25	-14	
					V_R			Exhibit 25	5-3	
Flow Enterin	ng Merge In	fluence A	rea	-	Flow Er	nterii	ng Dive	rge Influe	nce Are	<u></u> ea
	Actual	Max	Desirable	Violation?		,	Actual	Max Des	irable	Violation?
V_{R12}	3739	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
Level of Ser	vice Detern	nination (i	if not F)		·	f Ser	vice De	terminati	on (if no	ot F)
	+ 0.00734 V _R + 0	•						.0086 V ₁₂ -		
$D_{R} = 31.4 \text{ (pc/}$	• • • • • • • • • • • • • • • • • • • •	12	n.		1	oc/mi/		12	D	
LOS = D (Exhib	•				I		t 25-4)			
Speed Deter	•				Speed L		•			
•	xibit 25-19)				' '	Exhibit		·		
	h (Exhibit 25-19)				S _R = mph (Exhibit 25-19)					
					$S_0 = mph (Exhibit 25-19)$					
•										
S = 57.4 mpf		S = mph (Exhibit 25-15)								

Generated: 4/20/2011 10:08 AM

		RAI	MPS AND	RAMP JUN	CTIONS W	ORKSH	EET					
General	Inform				Site Infor							
Analyst		SKB		Fı	reeway/Dir of Tr		I-40 W	/B				
Agency or Co	ompany		T/TranSystems		unction		Exit 3					
Date Perform			3/2011		urisdiction			e County				
Analysis Tim	e Period		eak Period	А	nalysis Year		2034	,				
		Existing Condit										
Inputs												
Jpstream Ad	lj Ramp		Terrain: Leve	j						Downstre Ramp	eam Adj	
☐ Yes	☐ On									✓ Yes	☐ On	
✓ No	☐ Off									□ No	✓ Off	
- _{up} =	ft									L _{down} =	2000 ft	
V _u =	veh/h		5	$S_{FF} = 70.0 \text{ mph}$ Sketch (show lanes, L _A	$S_{FR} = 35.0 \text{ mph}$ $L_{A_1} L_{D_2} V_{D_2} V_{f}$ $V_D = 159 \text{ V}$					159 veh/h	
Convers	ion to	pc/h Und	der Base	Conditions		5 K I						
(pc/h)		V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p	
Freeway		2880	0.90	Level	25	0	0	.889	1.00		3600	
Ramp		408	0.90	Level	3	0	0	.985	1.00		460	
UpStream					1					1		
DownStream	n	159	0.90	Level	3	0	0	.985	1.00		179	
			Merge Areas		•		•		Diverge Area	S		
Estimati	on of	V ₁₂				Estimat	ion	of v ₁₂				
		V ₁₂ = V _F	(P)			1			V _R + (V _F - '	V_\P		
_				- OF O		_					0)	
EQ =			ation 25-2 o	•		L _{EQ} =			Equation 2		•	
P _{FM} =			-	tion (Exhibit 25-5))	P _{FD} =				uation (Exhibit 25-12)		
/ ₁₂ =		3600				V ₁₂ =		-	oc/h	U 05.45 05.4()		
V_3 or V_{av34}		0 pc/ ł	n (Equation	25-4 or 25-5)		V_3 or V_{av34}			pc/h (Equatio	n 25-15 or 2	5-16)	
Is V_3 or V_{av3}	$_{34} > 2,700$	pc/h? TYes	s 🗹 No			Is V ₃ or V _{av}	,34 > 2,	700 pc/h?	Yes I	No		
Is V ₃ or V _{av3}	, > 1.5 * \	V ₁₂ /2	s 🔽 No			Is V ₃ or V _{av}	,34 > 1.	5 * V ₁₂ /2	Yes I	No		
f Yes,V _{12a} =			(Equation 2	5-8)					oc/h (Equa)	
Capacity			(= 9000.0 = 1			Capacit					<u> </u>	
Sapacity	CHEC			`anaaitu	LOS F?	Capacit	y Ci			Canacity	LOS F?	
		Actual		Capacity	LUST!	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual		Capacity	LUSE	
					1	V _F			Exhibit 2	_		
V_{FO}		4060	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2	5-14		
						V_R			Exhibit 2	5-3		
Flow En	terina	Merge In	fluence A	\rea	-	Flow Er	nteri	ng Dive	rge Influ	ence Are		
		Actual		Desirable	Violation?	1		Actual	Max De		Violation?	
V _{R12}	,	4060	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14			
		ce Detern	nination (<u>.l</u>		f Sai		terminat		0 <i>t F</i>)	
).0078 V ₁₂ - 0.			+			.0086 V ₁₂ -	•	<i>,</i>	
		• • • • • • • • • • • • • • • • • • • •	v ₁₂ - 0.	UUUZI LA			• • •		.0000 v ₁₂ ·	0.009 LD		
IX.	.8 (pc/mi/	•				'` "	oc/mi/	•				
.OS = D ((Exhibit 2	5-4)				LOS = (I	Exhib	t 25-4)				
Speed D	eterm	ination				Speed I	Dete	rminatio	on			
$M_{\rm S} = 0.5$	512 (Exibi	t 25-19)				$D_s = (E_s)^{-1}$	xhibit	25-19)			· · ·	
-	•	Exhibit 25-19)				S _R = mph (Exhibit 25-19)						
						S_0 = mph (Exhibit 25-19)						
						1						
S = 55.7 mph (Exhibit 25-14) $S = mph (Exhibit 25-15)$												

Generated: 4/20/2011 10:08 AM

	RAI	MPS AND	RAMP JUNC	CTIONS W	ORKSH	EET					
General Infor				Site Infor							
Analyst	SKB			eway/Dir of Tr		I-40 WB					
Agency or Company		T/TranSystems		nction		Exit 35					
Date Performed		3/2011		isdiction		Fayette Cou	unty				
Analysis Time Period		eak Period	Ana	alysis Year		2034	,				
Project Description				,							
Inputs											
Upstream Adj Ramp		Terrain: Leve						Downstr Ramp	eam Adj		
☐ Yes ☐ Or	1							✓ Yes	☐ On		
✓ No	f							□ No	✓ Off		
L _{up} = ft								L _{down} =	2000 ft		
		S	FF = 70.0 mph		$S_{FR} = 3$	35.0 mph		\/ _	21/		
$V_u = veh/h$			Sketch (s	how lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			$V_D =$	216 veh/h		
Conversion to	o pc/h Und	der Base (Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	HF x f _{HV} x f _p		
Freeway	3175	0.90	Level	25	0	0.889	1.00		3969		
Ramp	263	0.90	Level	3	0	0.985	1.00		297		
UpStream											
DownStream	216	0.90	Level	3	0	0.985	1.00		244		
		Merge Areas			<u> </u>		Diverge A	reas			
Estimation of	¹ V ₁₂				Estimat	tion of v	12				
	$V_{12} = V_{F}$	(P _{FM})				\	$V_{12} = V_R + (V_F)$	V _R)P _{FD}			
L _{EQ} =	(Equa	ation 25-2 or	25-3)		L _{EQ} =		(Equatio	n 25-8 or 25	-9)		
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		· ·	quation (Exhib	•		
	3969 r		CATHOR 20 0)		1		pc/h	446.116 11 (271.116)(2012)			
V ₁₂ =	•				V ₁₂ =		•	05.45)		
V_3 or V_{av34}			25-4 or 25-5)		V ₃ or V _{av34}			ation 25-15 or 2 	25-16)		
Is V_3 or $V_{av34} > 2,70$					Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No						
Is V_3 or $V_{av34} > 1.5$	$V_{12}/2 \square Yes$	s 🗹 No			Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
If Yes,V _{12a} =	pc/h ((Equation 25	-8)		If Yes,V _{12a} =	=	pc/h (Eq	uation 25-18	3)		
Capacity Che	cks				Capacit	y Check	rs				
	Actual	С	apacity	LOS F?		Д	ctual	Capacity	LOS F?		
					V_{F}		Exhib	it 25-14			
V_{FO}	4266	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhib	it 25-14			
					V _R	- 1		it 25-3			
Flow Entering	Morgo In	fluence A	<u></u>	<u> </u>	<u> </u>	ntoring !	Diverge Inf				
I IOW EIITEIII	Actual		Desirable	Violation?	i iow Ei	Actua		Desirable	Violation?		
V _{R12}	4266	Exhibit 25-7	4600:All	No	V ₁₂	Actua	Exhibit 25		v ioiation:		
Level of Serv						f Service	e Determin		ot F)		
	0.00734 v _R + 0				1		2 + 0.0086 V	•			
.,			A			oc/mi/ln)	J.JJJJJ V.	12 3.000 LD			
$D_R = 35.5 \text{ (pc/m)}$ LOS = E (Exhibit)					I '' "	oc/mi/in) Exhibit 25-	.4)				
Speed Detern					<u> </u>	Determii					
M _S = 0.564 (Exil					† '	Exhibit 25-19					
_ ~						nph (Exhibit :	•				
.,	(Exhibit 25-19)				S_0 = mph (Exhibit 25-19)						
•	Exhibit 25-19)										
S = 54.2 mph	(Exhibit 25-14)				S = m	ipn (Exnibit)	<u> </u>				

Generated: 4/20/2011 10:09 AM

ln _c				
Do				
Inc				
Dr				
Do				
IDa				
	ownstream Adj amp			
	Yes On			
	No			
	= 2000 ft			
V	$_{\rm O}$ = 715 veh/h			
<u> </u>				
f _p v =	= V/PHF x f _{HV} x f _p			
1.00	2268			
1.00	271			
1.00	834			
Diverge Areas				
	. 2			
	•			
using Equation	(Exhibit 25-12)			
pc/h				
pc/h (Equation 25	5-15 or 25-16)			
☐ Yes ☐ No				
pc/h (Equation	25-18)			
	acity LOS F			
Exhibit 25-14				
Exhibit 25-14				
Exhibit 25-3				
erge Influenc	ce Area			
Max Desirat	4			
Exhibit 25-14				
etermination	i (if not F)			
0.0086 V ₁₂ - 0.0	009 L _D			
ion				
9)				
S ₀ = mph (Exhibit 25-19)				
S = mph (Exhibit 25-15)				
	f _p V: 1.00 1.00 1.00 1.00 Diverge Areas V _R + (V _F - V _R) (Equation 25-8 using Equation pc/h pc/h (Equation 25 Yes No Pc/h (Equation 25 Exhibit 25-14 Exhibit 25-14 Exhibit 25-14 Exhibit 25-14 Determination 0.0086 V ₁₂ - 0.0			

Generated: 4/20/2011 10:10 AM

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSH	EET				
General Info		55		Site Infor						
Analyst	SKB			eeway/Dir of Tr		I-40 EB				
Agency or Company		T/TranSystems		nction		Exit 42				
Date Performed		3/2011		risdiction		Fayette	County			
Analysis Time Perio	d PM P	eak Period	An	alysis Year		2014	,			
Project Description										
Inputs	-									
Upstream Adj Ramp)	Terrain: Leve	l						Downstre Ramp	am Adj
Yes O	n								✓ Yes	☐ On
▼ No □ Ot	ff								□ No	✓ Off
$L_{up} = ft$			_{FF} = 70.0 mph		S _{FR} =	25 0 mnh	`		L _{down} =	2000 ft
$V_u = veh/h$	า	3	• • • • • • • • • • • • • • • • • • • •	show lanes, L _A ,	111	33.0 mpi	1		$V_D =$	397 veh/h
Conversion t	to pc/h Und	der Base (Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f,	HV	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	1934	0.90	Level	25	0	0.8	89	1.00		2418
Ramp	367	0.90	Level	10	0	0.9	52	1.00	ĺ	428
UpStream						1	T (
DownStream	397	0.90	Level	10	0	0.9	52	1.00		463
		Merge Areas						Diverge Areas		
Estimation o	f v ₁₂				Estimat	tion o	f v ₁₂			
	V ₁₂ = V _F	(P ₅₄)			1		V ₄₀ =	V _R + (V _F - V	'5)P-5	
 -		、 ™, ation 25-2 or	25.2\		_			Equation 25		2)
-EQ =			•		L _{EQ} =					•
P _{FM} =			ion (Exhibit 25-5)		P _{FD} =			using Equati	ion (Exnibit	25-12)
V ₁₂ =	2418				V ₁₂ =		-	pc/h		
V_3 or V_{av34}			25-4 or 25-5)		V_3 or V_{av34}			pc/h (Equation		5-16)
Is V_3 or $V_{av34} > 2,70$	00 pc/h? 🥅 Ye:	s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? \square Yes \square No					
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	_{/34} > 1.5	* V ₁₂ /2	Yes No	0	
f Yes,V _{12a} =	pc/h	(Equation 25	i-8)		If Yes, V _{12a}	=		oc/h (Equati	on 25-18)	
Capacity Che					Capacit					
	Actual	С	apacity	LOS F?	1		Actual	C	apacity	LOS F?
	1	Ì			V _F			Exhibit 25		
V	2846	Exhibit 25-7		No	<u> </u>	- V		Exhibit 25		-
V_{FO}	2040	EXHIBIT 23-7		INO	$V_{FO} = V_{F}$	· · VR			_	_
					V _R			Exhibit 25	5-3	
Flow Entering	g Merge In	fluence A	rea		Flow E	nterin	g Dive	rge Influe	nce Are	a
	Actual	Max	Desirable	Violation?		Ac	ctual	Max Des	irable	Violation?
V_{R12}	2846	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
Level of Serv	vice Detern	nination (i	f not F)		Level o	f Serv	ice De	terminati	on (if no	ot F)
	- 0.00734 v _R + 0	•			 			.0086 V ₁₂ -		-
D _R = 24.3 (pc/n	.,	12	Λ		1	pc/mi/ln		12	D	
_OS = C (Exhibit					'` ''	Exhibit :	•			
•					<u> </u>		-			
Speed Deteri					Speed I			חח		
$M_{\rm S} = 0.353$ (Exibit 25-19)					$D_s = $ (Exhibit 25-19)					
$S_R = 60.1 \text{ mph}$	R= 60.1 mph (Exhibit 25-19)					S _R = mph (Exhibit 25-19)				
						$S_0 = mph$ (Exhibit 25-19)				
•	(Exhibit 25-14)				1 *	nph (Exhi	bit 25-15)			
	, = 5 /				<u>ı "</u>	1 /-/···	0 10)			

Generated: 4/20/2011 10:10 AM

	RAI	MPS AND	RAMP JUNC	CTIONS W	ORKSH	EET						
General Info				Site Infor								
Analyst	SKB			eeway/Dir of Tr		I-40 WB						
Agency or Company		T/TranSystems		nction		Exit 42						
Date Performed		3/2011		risdiction		Fayette Co	unty					
Analysis Time Perio	d AM P	eak Period	An	alysis Year		2014	,					
Project Description												
Inputs												
Upstream Adj Ramp)	Terrain: Leve							Downstre Ramp	eam Adj		
☐ Yes ☐ Oi	n								✓ Yes	☐ On		
✓ No ☐ Of	ff								□ No	✓ Off		
L _{up} = ft									L _{down} =	2000 ft		
$V_u = veh/t$	า	S	FF = 70.0 mph	how lance I	$S_{FR} = 3$	35.0 mph		,	V _D =	374 veh/h		
-		dor Bood		show lanes, L _A	L _D , v _R , v _f)							
Conversion t	o pc/n Und	der Base (<i>sonaitions</i>		1	1		ſ				
(pc/h)	v (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}		f _p	v = V/PH	F x f _{HV} x f _p		
Freeway	1828	0.90	Level	25	0	0.889	1	.00		2285		
Ramp	387	0.90	Level	10	0	0.952	1	.00		452		
UpStream												
DownStream	374	0.90	Level	10	0	0.952		.00		436		
F -44		Merge Areas				· · · · · · · · · · · · · · · · · · ·		ge Areas				
Estimation o	τ V ₁₂				Estimat	ion of v	12					
	$V_{12} = V_F$	(P _{FM})				_	$V_{12} = V_{R} +$	- (V _F - V _I	R)P _{FD}			
L _{EQ} =	(Equa	ation 25-2 or	25-3)		L _{EQ} =		(Equ	ation 25	-8 or 25-	9)		
P _{FM} =	1.000	using Equati	on (Exhibit 25-5)		P _{FD} =		usin	g Equati	on (Exhibit	25-12)		
V ₁₂ =	2285		, ,,,		V ₁₂ =		pc/h	•	,			
	-		25-4 or 25 5\		1		•		25-15 or 2!	5-16)		
V_3 or V_{av34}			25-4 or 25-5)		V ₃ or V _{av34}	. 2700 -				J-10 <i>j</i>		
Is V_3 or $V_{av34} > 2.70$					Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No							
Is V_3 or $V_{av34} > 1.5$	· -				Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No							
		(Equation 25	-8)		If Yes,V _{12a} =		pc/h	(Equation	on 25-18)			
Capacity Che	ecks				Capacit	y Chec	ks					
	Actual	C	apacity	LOS F?		7	Actual		pacity	LOS F?		
					V _F		Į.	Exhibit 25-	14			
V _{FO}	2737	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	E	Exhibit 25-	14			
					V_R			Exhibit 25	-3			
Flow Enterin	g Merge In	fluence A	rea		Flow Er	nterina	Diverae	Influe	nce Are			
	Actual		Desirable	Violation?		Actua		Max Desi		Violation?		
V _{R12}	2737	Exhibit 25-7	4600:All	No	V ₁₂			oit 25-14				
Level of Serv	rice Detern	nination (i	f not F)			f Servic	e Deter	minatio	on (if no	ot F)		
	- 0.00734 v _R + 0				1		52 + 0.008			•		
D _R = 23.5 (pc/n	.,	12	Λ			oc/mi/ln)		14	D			
LOS = C (Exhibit					I '' "	Exhibit 25	-4)					
Speed Deteri					Speed I							
$M_S = 0.346 (Ex)$					† '	Exhibit 25-1						
	(Exhibit 25-19)					ph (Exhibit	25-19)					
.,	(Exhibit 25-19)				S_0 = mph (Exhibit 25-19)							
•	(Exhibit 25-14)				S = mph (Exhibit 25-15)							
o - 00.5 mpn	(EVIIINII 50-14)				۱۱ ۱۱	יאוי (רעוווטונ	∠J-1J)					

Generated: 4/20/2011 10:11 AM

	RAI	MPS AND	RAMP JUNC	CTIONS W	ORKSH	EET				
General Info				Site Infor						
Analyst	SKB		Fre	eeway/Dir of Tr	avel	I-40 W	/B			
Agency or Company	y TDO	T/TranSystems	Jur	nction		Exit 42	2			
Date Performed	04/18	3/2011	Jur	risdiction		Fayett	e County			
Analysis Time Perio	od PM F	eak Period	An	alysis Year		2014				
Project Description	Existing Condi	tions								
Inputs										
Upstream Adj Ramp		Terrain: Leve							Downstre Ramp	am Adj
Yes O	n								✓ Yes	☐ On
™ No □ Of	ff								□ No	✓ Off
$L_{up} = ft$									L _{down} =	2000 ft
$V_u = veh/h$	h	S	FF = 70.0 mph Sketch (s	show lanes, L _A ,	$S_{FR} = S_{FR}$	35.0 m	ph		V _D =	220 veh/h
Conversion t	to pc/h Und	der Base (Α'	ט' א' וי				<u> </u>	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	2311	0.90	Level	25	0	0	.889	1.00		2889
Ramp	620	0.90	Level	10	0	_	.952	1.00		723
UpStream	020	0.70	20001	10	Ť	Ť	.702	1.00		720
DownStream	220	0.90	Level	10	0	0	.952	1.00		257
		Merge Areas	2010.					Diverge Areas		
Estimation o					Estimat	tion				
	V ₁₂ = V _F	(P.,.)			1			V _R + (V _F - V	'-)P	
l =	.= .	ation 25-2 or	25-3)		-			(Equation 2		מו
L _{EQ} =			•		L _{EQ} =					•
P _{FM} =			ion (Exhibit 25-5)		P _{FD} =			using Equat	ion (Exhibit	25-12)
V ₁₂ =	2889				V ₁₂ =			pc/h		
V_3 or V_{av34}	-		25-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equation		5-16)
Is V_3 or $V_{av34} > 2,70$	00 pc/h?	s 🗹 No			Is V ₃ or V _{av}	_{/34} > 2,	700 pc/h?	Yes No	0	
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	_{/34} > 1.	5 * V ₁₂ /2	Yes No	0	
f Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes, V _{12a} :	=		pc/h (Equati	on 25-18)	
Capacity Che		· ·	·		Capacit					
	Actual	С	apacity	LOS F?	1		Actual	C	apacity	LOS F?
			- [V _F			Exhibit 25		
V_{FO}	3612	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D		Exhibit 25		
10					V_{R}	- 11		Exhibit 25	5-3	
Flow Enterin	a Merae In	fluence A	rea		<u>'</u>	nterii	na Dive	rge Influe	nce Are	<u> </u>
	Actual	4	Desirable	Violation?	1	_	Actual	Max Des		Violation?
V _{R12}	3612	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14		
Level of Serv	l .				·	f Ser		terminati	on (if no	ot F)
	+ 0.00734 v _R + 0	•			 			.0086 V ₁₂ -	•	
$D_{R} = 30.2 \text{ (pc/n)}$			А		1	pc/mi/		12	D	
LOS = D (Exhibit					'` ''		it 25-4)			
Speed Deteri	•				Speed I		•	<u> </u>		
					' '	Exhibit		<i>7</i> 11		
	tibit 25-19)									
-										
•						S_0 = mph (Exhibit 25-19)				
S = 57.9 mph (Exhibit 25-14)						S = mph (Exhibit 25-15)				

Generated: 4/20/2011 10:12 AM

	RA	MPS AND	RAMP JUN	CTIONS W	/ORKSHI	EET						
General Infor				Site Infor								
Analyst	SKB		Fr	eeway/Dir of Tr		I-40 EE	3					
Agency or Company						Exit 42						
Date Performed						Fayette County						
Analysis Time Period AM Peak Period Analysis Year					2034							
Project Description												
Inputs												
Upstream Adj Ramp Terrain: Level									Downstre Ramp	eam Adj		
☐ Yes ☐ On									✓ Yes	□ On		
☑ No ☐ Of	f								□ No	✓ Off		
L _{up} = ft		C 70.0					$L_{down} = 2000 \; f$ $S_{FR} = 35.0 \; mph$					
$V_u = veh/h$ $S_{FF} = 70.0 \text{ mph}$ Sketch (show lanes,						JJ.0 111¢	711		$V_D =$	754 veh/h		
Conversion t	o pc/h Un	der Base	Conditions									
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF x f _{HV} x f			
Freeway	2596	0.90	Level	25	0	0.	389	1.00		3245		
Ramp	275	0.90	Level	10	0	0.	952	1.00	1	321		
UpStream												
DownStream	754	0.90	Level	10	0	0.	952	1.00		880		
		Merge Areas				Diverge Areas						
Estimation of	f v ₁₂				Estimat	ion c	of V ₁₂					
	V ₁₂ = V _F	(P)						\/ _+ (\/ _ \	// \P			
1			. 05. 0)		$V_{12} = V_R + (V_F - V_R)P_{FD}$ (Equation 25.8 or 25.9)							
L _{EQ} =		ation 25-2 or	-		L _{EQ} = (Equation 25-8 or 25-9)							
P _{FM} =			ion (Exhibit 25-5)		P _{FD} = using Equation (Exhibit 25-12)							
V ₁₂ =	3245	pc/h			V ₁₂ = pc/h							
V ₃ or V _{av34}	0 pc/	h (Equation	25-4 or 25-5)		V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)							
Is V_3 or $V_{av34} > 2,70$	00 pc/h? 🥅 Ye	s 🗹 No			Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No							
Is V ₃ or V _{av34} > 1.5								Yes 🗆 N				
If Yes,V _{12a} =	· -		5-8)		If Yes, V _{12a} = pc/h (Equation 25-18)							
		(29001101120	, c _j					70/11 (Equa		<u>'</u>		
Capacity Checks						Capacity Checks						
	Actual	al C	Capacity 	LOS F?	\ \/	_				LOS F?		
		Exhibit 25-7		No	V _F		Exhil		_			
V_{FO}	3566				$V_{FO} = V_F - V$			Exhibit 25	t 25-14			
					V_R			Exhibit 2	5-3			
Flow Entering	a Merae Ir	ifluence A	rea	-	Flow Entering Diverge Influence Area							
	Actual		Desirable	Violation?	1	_	ctual	Max De		Violation?		
V _{R12}	3566	Exhibit 25-7	4600:AII	No	V ₁₂			Exhibit 25-14				
Level of Serv	<u> </u>				_	f Sor		terminat		ot F)		
	0.00734 V _R +	•						.0086 V ₁₂ -		<i>(</i>)		
,,		5.5576 v 12 - 0.9	A					.5550 12	5.505 LD			
$D_{R} = 30.0 \text{ (pc/m)}$	•				1 "	oc/mi/l	•					
LOS = D (Exhibit 25-4)					LOS = (Exhibit 25-4)							
Speed Deterr	mination				Speed L			on				
M _S = 0.424 (Exibit 25-19)					$D_s = $ (Exhibit 25-19)							
S _R = 58.1 mph (Exhibit 25-19)					S _R = mph (Exhibit 25-19)							
S ₀ = N/A mph (Exhibit 25-19)					S_0 = mph (Exhibit 25-19)							
S = 58.1 mph (Exhibit 25-14)				S = mph (Exhibit 25-15)								
- 00.1111p11	D = 111h11 (EX111011 50-10)											

Generated: 4/20/2011 10:20 AM

n Adj ☑ On ☑ Off 000 ft 49 veh/						
On Off						
On Off						
On Off						
On Off						
On Off						
On Off						
On Off						
Off 000 ft						
000 ft						
49 veh/						
f _{HV} x f _p						
0						
8						
4						
$V_{12} = V_R + (V_F - V_R)P_{FD}$ $L_{FO} =$ (Equation 25-8 or 25-9)						
1 .5						
V ₁₂ = pc/h						
V ₃ or V _{av34} pc/h (Equation 25-15 or 25-16)						
Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No						
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No						
If Yes, V _{12a} = pc/h (Equation 25-18)						
LOSF						
1 200.						
 						
├──						
<u></u>						
Flow Entering Diverge Influence Area Actual Max Desirable Violation?						
Violation						
F)						
F)						
F)						
<u>F)</u>						
<u>F)</u>						
F)						
F)						
F)						
F)						

Generated: 4/20/2011 10:21 AM

	RA	MPS AND	RAMP JUNG	CTIONS W	VORKSHI	EET							
General Info				Site Infor									
Analyst SKB Agency or Company TDOT/TranSystems Date Performed 04/18/2011			Ju Ju	Freeway/Dir of Travel Junction Jurisdiction									
Analysis Time Period AM Peak Period Analysis Year Project Description Existing Conditions						2034							
	Existing Condi	itions											
Inputs	_	Terrain: Level							D				
Upstream Adj Ramp Frain: Level Yes									Downstre Ramp	eam Adj			
	□ Off								✓ Yes	□ On			
I NO	ЛІ								□ No	✓ Off			
L _{up} = ft		S	$S_{FF} = 70.0 \text{ mph}$ $S_{FR} = 35.0 \text{ mph}$					L _{down} = 2000 ft					
V _u = veh	$V_u = \text{veh/h}$ Sketch (show lanes, $L_{A'}$								$V_D =$	401 veh/h			
Conversion	to pc/h Un	der Base (А	י טי אי וי								
	V	PHF	Terrain	%Truck	0/ Dv	T f		f	V – V/DH	Evf vf			
(pc/h)	(Veh/hr)	+			%Rv	+	HV	f _p		F x f _{HV} x f _p			
Freeway	2631	0.90	Level	25	0	0.8		1.00	4	3289			
Ramp	434	0.90	Level	10	0	0.9	52	1.00		506			
UpStream	401	0.90	Lovol	10		100	F 2	1.00	+	440			
DownStream	401	Merge Areas	Level	10	0	0.9		1.00 Diverge Area	l Ic	468			
Estimation of		Werge Areas			Estimat	ion o		Siverge Area	13				
	V ₁₂ = V _F	(P ₅₁₄)						V _D + (V _C -	V _D)P _{ED}				
l =		ation 25-2 or	25-3)		$V_{12} = V_R + (V_F - V_R)P_{FD}$ $L_{FO} =$ (Equation 25-8 or 25-9)								
L _{EQ} = P _{FM} =			on (Exhibit 25-5)		$L_{EQ} = $ (Equation 25-8 or 25-9) $P_{FD} = $ using Equation (Exhibit 25-12)								
V ₁₂ =	3289		OII (EXHIBIT 25-5)		$V_{12} = pc/h$								
V ₁₂ – V ₃ or V _{av34}		h (Equation 2	05 4 or 25 5)		$V_{12} = PC/II$ V_3 or V_{av34} pc/h (Equation 25-15 or 25-16)								
Is V_3 or $V_{av34} > 2.7$.5-4 01 25-5)		v_3 or v_{av34} pc/fi (Equation 25-15 of 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No								
					1								
Is V ₃ or V _{av34} > 1.5	·=		0)		Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No								
·						If Yes, V _{12a} = pc/h (Equation 25-18)							
Capacity Checks						Capacity Checks							
	Actual	C	apacity	LOS F?	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		Actual		Capacity	LOS F?			
.,					V _F			Exhibit 2					
V _{FO}	3795	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2					
					V _R			Exhibit 2	25-3				
Flow Enterin	ng Merge Ir				Flow Entering Diverge Influence Area								
	Actual	`	Desirable	Violation?		A	ctual	Max De		Violation?			
V _{R12}	3795	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-14					
Level of Ser					_				tion (if n	ot F)			
$D_{R} = 5.475$	+ 0.00734 V _R +	0.0078 V ₁₂ - 0.0	0627 L _A			$D_R = 4$.252 + 0	.0086 V ₁₂	- 0.009 L _D				
D _R = 31.7 (pc/	mi/ln)				$D_R = (p)$	oc/mi/lr	1)						
LOS = D (Exhibit 25-4)					LOS = (Exhibit 25-4)								
Speed Determination					Speed Determination								
-					$D_s = $ (Exhibit 25-19)								
S_R = 57.1 mph (Exhibit 25-19)					S _R = mph (Exhibit 25-19)								
S_0 = N/A mph (Exhibit 25-19)					S_0 = mph (Exhibit 25-19)								
S = 57.1 mph (Exhibit 25-14)				S = mph (Exhibit 25-15)									
- 07.11 mpi	. (=				<u> </u>	L /⊏\/	~1.20 10)						

Generated: 4/20/2011 10:23 AM

	R	AMPS AND	RAMP JUN	CTIONS V	VORKSH	EET							
General In	formation			Site Infor									
Analyst SKB Agency or Company TDOT/TranSystems Date Performed 04/18/2011 Analysis Time Period PM Peak Period			Ju Ju	Freeway/Dir of Travel Junction Jurisdiction Analysis Year			I-40 WB Exit 42 Fayette County 2034						
Project Descript	ion Existing Cor	nditions											
Inputs									1				
Upstream Adj Ramp Terrain: Level									Downstre Ramp	eam Adj			
									✓ Yes	☐ On			
™ No □	Off								□ No	Off			
$L_{up} = f$	t	S	$S_{FF} = 70.0 \text{ mph}$ $S_{FR} = 35.0 \text{ mph}$						L _{down} =	2000 ft			
$V_u = veh/h$ Sketch (show lanes, $L_{A^{-}}$									$V_D =$	257 veh/h			
Conversio	n to pc/h U	nder Base (А А	' D' R' I'				ļ				
(pc/h)	V	PHF	Terrain	%Truck	%Rv		: HV	fp	v = V/PH	F x f _{HV} x f _p			
	(Veh/hr)				 	+				•			
Freeway Ramp	3128 650	0.90	Level	25 10	0	3.0		1.00	-	3910 758			
UpStream	000	0.90	Level	10	0	0.9	952	1.00	1	738			
DownStream	257	0.90	Level	10	0	0.9	952	1.00		300			
		Merge Areas	2010.	1	†	0		Diverge Area	 IS				
Estimation	1 of V ₁₂	<u> </u>			Estimat	tion o		J					
	<u>:=</u>	V _F (P _{FM})			+			: V _D + (V _F -	V _D)P _{ED}				
 ₌₀ =		ւր (՝ բա <i>ր</i> quation 25-2 or	25-3)		$V_{12} = V_R + (V_F - V_R)P_{FD}$ $L_{FO} =$ (Equation 25-8 or 25-9)								
L _{EQ} = P _{FM} =	•	•	on (Exhibit 25-5)	1	$L_{EQ} = $ (Equation 25-8 or 25-9) $P_{FD} = $ using Equation (Exhibit 25-12)								
V ₁₂ =		pc/h	Off (Exhibit 25-5)	1	$V_{12} = pc/h$								
V ₁₂ – V ₃ or V _{av34}		c/h (Equation 2	05 4 or 25 5\					•	on 25 15 or 2	F 14)			
	2,700 pc/h?		25-4 01 25-5)		V_3 or V_{av34} pc/h (Equation 25-15 or 25-16) Is V_3 or $V_{av34} > 2,700$ pc/h? Yes No								
					Is V_3 or $V_{av34} > 2,700$ pc/// Yes No Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No								
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes No													
·=-						If Yes, V _{12a} = pc/h (Equation 25-18)							
Capacity Checks						Capacity Checks							
	Actual	 	apacity	LOS F?	V _F	-	Actual		Capacity	LOS F?			
.,,	1,,,,	E		Ma				Exhibit 2					
V_{FO}	4668	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2					
					V _R				Exhibit 25-3				
Flow Ente		Influence A		Ť	Flow Entering Diverge Influence Area								
	Actual		Desirable	Violation?	1	A	ctual	Max De		Violation?			
V _{R12}	4668	Exhibit 25-7	4600:All	Yes	V ₁₂			Exhibit 25-14		<u> </u>			
		rmination (i			1			eterminat	•	ot F)			
	• • • • • • • • • • • • • • • • • • • •	+ 0.0078 V ₁₂ - 0.0	00627 L _A					0.0086 V ₁₂	- 0.009 L _D				
1	(pc/mi/ln)				I '` ''	pc/mi/lı	•						
LOS = E (Exhibit 25-4)					LOS = (Exhibit 25-4)								
Speed Determination					Speed Determination								
M _S = 0.701 (Exibit 25-19)					$D_s = $ (Exhibit 25-19)								
S_R = 50.4 mph (Exhibit 25-19)					S _R = mph (Exhibit 25-19)								
S ₀ = N/A mph (Exhibit 25-19)					$S_0 = mph (Exhibit 25-19)$								
S = 50.4 mph (Exhibit 25-14)				S = mph (Exhibit 25-15)									

Generated: 4/20/2011 10:23 AM

	RA	MPS AND	RAMP JUNG	CTIONS V	VORKSHI	EET				
General Info				Site Infor						
Analyst Agency or Compa Date Performed	SKB ny TDC	T/TranSystems 8/2011	Ju	eeway/Dir of Tonction	ravel	I-40 EE Exit 47 Haywo		V		
Analysis Time Per Project Descriptior		Peak Period litions	An	nalysis Year		2014				
Inputs	3									
Upstream Adj Ran	np	Terrain: Leve							Downstre Ramp	eam Adj
☐ Yes ☐ C									✓ Yes	☐ On
✓ No C	Off								□ No	✓ Off
L _{up} = ft		S	_{FF} = 70.0 mph		S _{FR} = 3	35.0 mr	oh		L _{down} =	2000 ft
$V_u = veh$	n/h		• •	show lanes, L _A					$V_D =$	102 veh/h
Conversion	to pc/h Un	der Base (А	י טי אי וי					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f_{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	1741	0.90	Level	25	0	0.	389	1.00		2176
Ramp	29	0.90	Level	2	0	0.	990	1.00		33
UpStream DownStream	102	0.90	Level	2	0		990	1.00	+	114
Downstream	102	Merge Areas	revei		1 0	0.	770	Diverge Are	<u> </u>	114
Estimation	of V ₁₂				Estimat	ion c	of V ₁₂	J		
	V ₁₂ = V _F	(P _{EM})						= V _R + (V _F -	V _D)P _{ED}	
L _{EQ} =		ıation 25-2 or	25-3)		L _{EQ} =		12		25-8 or 25-	9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =				ation (Exhibit	•
V ₁₂ =	2176		,		V ₁₂ =			pc/h	·	·
V ₃ or V _{av34}	0 pc/	h (Equation 2	25-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equati	on 25-15 or 2	5-16)
Is V_3 or $V_{av34} > 2$,	700 pc/h? 🥅 Ye	es 🗹 No			Is V ₃ or V _{av}	₃₄ > 2,7	'00 pc/h?	☐ Yes ☐	No	
Is V_3 or $V_{av34} > 1$.	5 * V ₁₂ /2 ΓΥ Υ	es 🗹 No			Is V ₃ or V _{av}	₃₄ > 1.5	* V ₁₂ /2	☐ Yes ☐	No	
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =	=		pc/h (Equa	ation 25-18)	1
Capacity Cl	necks				Capacit	y Ch	ecks			
	Actual	С	apacity	LOS F?			Actua		Capacity	LOS F?
					V _F			Exhibit 2	25-14	
V_{FO}	2209	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2	25-14	
					V _R			Exhibit :	25-3	
Flow Enteri	ng Merge li	*		-	Flow Er	terir	g Div		ience Are	
.,	Actual		Desirable	Violation?	ļ	P	ctual	1	<u>esirable</u>	Violation?
V _{R12}	2209	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-1		1 = 1
Level of Sei									tion (if no	ot F)
• • • • • • • • • • • • • • • • • • • •	5 + 0.00734 V _R +	0.0078 V ₁₂ - 0.0	0627 L _A					0.0086 V ₁₂	- 0.009 L _D	
$D_{R} = 19.6 \text{ (pc)}$					I " "	oc/mi/l	•			
LOS = B (Exhib							25-4)	•		
Speed Dete					Speed L			ion		
	Exibit 25-19)				' '	xhibit 2	•))		
	h (Exhibit 25-19)				'`		nibit 25-19			
	h (Exhibit 25-19)				ľ		nibit 25-19			
S = 61.0 mp	h (Exhibit 25-14)				S = m	ph (Exh	nibit 25-15)		

Generated: 4/20/2011 10:24 AM

		RAI	MPS AND	RAMP JUNG	CTIONS V	VORKSHI	EET				
Genera	al Infori			, , , ,	Site Infor						
Analyst Agency or Date Perfo	Company	SKB TDO	T/TranSystems 8/2011	Ju	eeway/Dir of Tonction	ravel	I-40 El Exit 47		V.		
Analysis Ti Project De:	ime Period		eak Period		alysis Year		2014	ou Couri	у		
Inputs	Scription	LAISTING CONTIN	110113								
Upstream <i>i</i>	Adj Ramp		Terrain: Level							Downstre Ramp	eam Adj
☐ Yes	□ On									✓ Yes	☐ On
✓ No	☐ Off									□ No	✓ Off
L _{up} =	ft		S	_{FF} = 70.0 mph		S _{FR} = 3	35.0 mj	oh		L _{down} =	2000 ft
$V_u =$	veh/h				show lanes, L _A					$V_D =$	169 veh/h
Conve	rsion to	pc/h Und	der Base (Conditions		D K I					
(pc		V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway		1804	0.90	Level	25	0		889	1.00		2255
Ramp		39	0.90	Level	2	0	0.	990	1.00		44
UpStream DownStrea		169	0.90	Level	2	0	0.	990	1.00		190
Estima	tion of		Merge Areas			Estimat	ion	of v	Diverge Are	as	
LSUIIIa	uon oi	- -	·			Estimat	1011			=	
L _{EQ} =		V ₁₂ = V _F (Equa	(P _{FM}) ation 25-2 or	25-3)		L _{EQ} =		V ₁₂ =	= V _R + (V _F - (Equation	· V _R)P _{FD} 25-8 or 25-	9)
P _{FM} =		1.000 2255 ;		on (Exhibit 25-5)		P _{FD} =				ation (Exhibi	25-12)
V ₁₂ = V ₃ or V _{av34}		0 pc/ ł	n (Equation 2	25-4 or 25-5)		$V_{12} = V_3 \text{ or } V_{av34}$				ion 25-15 or 2	5-16)
		pc/h? 🔲 Yes							☐ Yes ☐		
		V ₁₂ /2						·-	☐ Yes ☐		
If Yes,V _{12a}	•		(Equation 25	-8)		If Yes,V _{12a} =			pc/h (Equ	ation 25-18)	
Capaci	ity Che		1		1	Capacit	y Ch		. 1		1
		Actual	C;	apacity	LOS F?	V _F		Actua	Exhibit	Capacity 25-14	LOS F?
V _F	FO	2299	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit		
						V _R			Exhibit		
Flow E	ntering		fluence A			Flow Er	_			ience Are	
V _R		Actual 2299	Max I Exhibit 25-7	Desirable 4600:All	Violation? No	V ₁₂	1 1	Actual	Max D Exhibit 25-1	esirable 4	Violation?
			nination (i		140		f Ser	vice D		ition (if n	of F)
			0.0078 V ₁₂ - 0.0						0.0086 V ₁₂	•	<i></i>
1.	20.3 (pc/mi C (Exhibit 2					I " "	oc/mi/l =xhibi	n) t 25-4)			
		ination				Speed L			ion		
	0.325 (Exib					' '	Exhibit 2				
_	60.9 mph (I	Exhibit 25-19)				$S_R = m$	ph (Ex	hibit 25-1	9)		
$S_0 = I$	N/A mph (E	xhibit 25-19) Exhibit 25-14)				ľ		hibit 25-1 hibit 25-1			
J – (υυ. 7 ΠΙΡΠ (Ι	_AHIDIL 20-14)				P = 111	ihii (EX	IIIVIL ZO- I	J)		

	RAI	MPS AND	RAMP JUNC	CTIONS W	ORKSH	EET			
General Infor				Site Infor					
Analyst	SKB			eeway/Dir of Tr		I-40 WB			
Agency or Company		T/TranSystems		nction		Exit 47			
Date Performed		3/2011		risdiction		Haywood Cou	ıntv		
Analysis Time Period		eak Period		alysis Year		2014			
Project Description			7	a.joio . oa.		2011			
Inputs									
Upstream Adj Ramp		Terrain: Leve						Downstre Ramp	eam Adj
Yes On	1							✓ Yes	☐ On
☑ No ☐ Off	f							□ No	✓ Off
L _{up} = ft								L _{down} =	2000 ft
		S	FF = 70.0 mph		$S_{FR} = 3$	35.0 mph		\/ _	20 /b
$V_u = veh/h$			Sketch (s	show lanes, L _A ,	$L_{D'}V_{R'}V_{f}$			$V_D =$	39 veh/h
Conversion to	o pc/h Und	der Base (•	
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	1815	0.90	Level	25	0	0.889	1.00		2269
Ramp	199	0.90	Level	2	0	0.990	1.00		223
UpStream									
DownStream	39	0.90	Level	2	0	0.990	1.00	1	44
		Merge Areas					Diverge Area	ıS	
Estimation of					Estimat	ion of v ₁₂			
	V ₁₂ = V _F	(P _{EM})				V.,	$\frac{1}{2} = V_R + (V_F - V_F)$	V _D)P _{ED}	
l =		` ™′ ation 25-2 or	25-3)		l =	12	Equation 2		o)
L _{EQ} =			-		L _{EQ} =		· ·		•
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		using Equa	ation (Exhibit	. 20-12)
V ₁₂ =	2269				V ₁₂ =		pc/h		
V_{3} or V_{av34}			25-4 or 25-5)		V ₃ or V _{av34}		pc/h (Equation		5-16)
Is V_3 or $V_{av34} > 2,70$	0 pc/h?	s 🗹 No			Is V ₃ or V _{av}	_{/34} > 2,700 pc/ł	n? ☐ Yes ☐ N	No	
Is V ₃ or V _{av34} > 1.5 *	V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	₃₄ > 1.5 * V ₁₂ /2	2	٧o	
If Yes, V _{12a} =	pc/h	(Equation 25	-8)		If Yes, V _{12a} =	=	pc/h (Equa	tion 25-18)	
Capacity Che						y Checks			
	Actual	C	apacity	LOS F?	10 11/10 11 11	Acti		Capacity	LOS F?
			1		V _F		Exhibit 2		
V_{FO}	2492	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _D	Exhibit 2	5-14	
- 40	2172	EXHIBIT 20 7			V _R	· K	Exhibit 2		
<u> </u>	<u> </u>	<u> </u>				<u> </u>			
Flow Entering		1	1	Ministry O	Flow Er		verge Influ		
V	Actual 2492	Exhibit 25-7	Desirable 4600:All	Violation? No	V ₁₂	Actual	Max De		Violation?
V _{R12}	J			INO	-	f Comico			<u> </u>
Level of Serv					1		Determinat		ot F)
.,	0.00734 v _R + 0).0078 V ₁₂ - 0.0	10627 L _A		1		+ 0.0086 V ₁₂ ·	- 0.009 L _D	
$D_R = 21.7 \text{ (pc/m)}$	i/ln)				$D_R = (p)$	oc/mi/ln)			
LOS = C (Exhibit)	25-4)				LOS = (I	Exhibit 25-4)			
Speed Detern	nination					Determina	ation		
M _S = 0.333 (Exil	bit 25-19)] °	Exhibit 25-19)			
S _R = 60.7 mph ((Exhibit 25-19)				$S_R = m$	ph (Exhibit 25	-19)		
	Exhibit 25-19)				$S_0 = m$	ph (Exhibit 25	-19)		
	(Exhibit 25-14)					ph (Exhibit 25	-15)		
L					<u> </u>	, ,	-,		

Generated: 4/20/2011 10:26 AM

	RAI	MPS AND	RAMP JUNG	CTIONS V	VORKSHI	EET				
General Info			, , , ,	Site Infor		-				
Analyst Agency or Compan Date Performed	SKB y TDO	T/TranSystems 8/2011	Ju	eeway/Dir of Ti nction risdiction		I-40 WE Exit 47 Haywoo	3 od County	l		
Analysis Time Perio		Peak Period	An	nalysis Year		2014				
Project Description	Existing Condi	tions								
Inputs		Torroin, Loyal								
Upstream Adj Ramp		Terrain: Level							Downstre Ramp	eam Adj
✓ Yes✓ No✓ O									✓ Yes	□ On
M NO I O	'11								□ No	✓ Off
L _{up} = ft		S	_{FF} = 70.0 mph		S _{FR} = 3	35.0 mp	h		L _{down} =	2000 ft
$V_u = veh/l$	h			show lanes, L _A		·			$V_D =$	41 veh/h
Conversion	to pc/h Uni	der Base (· A	: D: K: I/					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	HV	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	1911	0.90	Level	25	0	0.8	189	1.00		2389
Ramp	104	0.90	Level	2	0		90	1.00		117
UpStream										
DownStream	41	0.90	Level	2	0	0.9	90	1.00		46
5 - (i (i		Merge Areas			F - (i (•		Diverge Area	as	
Estimation o	^{17 V} 12				Estimat	ion o				
	$V_{12} = V_F$	(P _{FM})					V ₁₂ =	· V _R + (V _F -	$V_R)P_{FD}$	
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =			(Equation	25-8 or 25-	9)
P _{FM} =	1.000	using Equati	on (Exhibit 25-5)		P _{FD} =			using Equa	ation (Exhibi	t 25-12)
V ₁₂ =	2389	•			V ₁₂ =			pc/h		
V ₃ or V _{av34}		h (Equation 2	25-4 or 25-5)		V_3 or V_{av34}			pc/h (Equati	on 25-15 or 2	5-16)
Is V_3 or $V_{av34} > 2.7$	00 pc/h?	s 🗹 No			Is V ₃ or V _{av}	₃₄ > 2,7	00 pc/h?	☐ Yes ☐	No	
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	₃₄ > 1.5	* V ₁₂ /2	☐ Yes ☐	No	
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =	=		pc/h (Equa	ation 25-18))
Capacity Ch	ecks				Capacit	y Ch	ecks			
	Actual	Ca	apacity	LOS F?			Actual		Capacity	LOS F?
					V_{F}			Exhibit 2	25-14	
V_{FO}	2506	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit 2	25-14	
					V_R			Exhibit 2	25-3	
Flow Enterin	a Merae In	fluence A	rea		Flow En	terin	a Dive	erae Influ	ience Are	<u>'</u> ea
	Actual	*	Desirable	Violation?			ctual		esirable	Violation?
V _{R12}	2506	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-1		
Level of Serv	vice Detern	nination (i	f not F)			f Serv	ice D	etermina	tion (if n	ot F)
	+ 0.00734 v _R + 0	•			_			0.0086 V ₁₂	•	,
D _R = 21.8 (pc/r	• • • • • • • • • • • • • • • • • • • •	12	^			oc/mi/lı			J	
LOS = C (Exhibi						Exhibit	•			
Speed Deter					Speed L			on		
	kibit 25-19)				' '	xhibit 2				
_	(Exhibit 25-19)				1	ph (Exh	ibit 25-19)		
	(Exhibit 25-19)				I ''		ibit 25-19			
	(Exhibit 25-14)				1		ibit 25-15			
[- 00.7 mpm	\				<u> </u>	L /_VI		,		

Generated: 4/20/2011 10:26 AM

	RAI	MPS AND	RAMP JUNC	CTIONS W	ORKSH	EET				
General Infor				Site Infor						
Analyst	SKB			eeway/Dir of Tr		I-40 EB				
Agency or Company		T/TranSystems		nction		Exit 47				
Date Performed		3/2011		isdiction		Haywood	County			
Analysis Time Period		eak Period		alysis Year		2034				
Project Description				,						
Inputs										
Upstream Adj Ramp		Terrain: Leve							Downstre Ramp	eam Adj
☐ Yes ☐ Or	า								✓ Yes	☐ On
✓ No	f								□ No	✓ Off
L _{up} = ft									L _{down} =	2000 ft
$V_{u} = veh/h$	1	S	FF = 70.0 mph	how lance I	$S_{FR} = 1$	35.0 mph			V _D =	124 veh/h
		dor Bood		show lanes, L _A	LD, VR, Vf)					
Conversion t	o pc/n und ∨		Jonaitions		Т	Т			1	
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{H√}	,	f _p	v = V/PH	F x f _{HV} x f _p
Freeway	2515	0.90	Level	25	0	0.889		1.00		3144
Ramp	43	0.90	Level	2	0	0.990		1.00		48
UpStream					ļ		-			
DownStream	124	0.90	Level	2	0	0.990		1.00		139
Estimation of		Merge Areas			Fatimat	tion of		erge Areas		
Estimation o					Estimat					
	$V_{12} = V_F$	(P _{FM})					$V_{12} = V_R$	+ (V _F - V	_R)P _{FD}	
L _{EQ} =	(Equa	ation 25-2 or	25-3)		L _{EQ} =		(Ed	quation 25	5-8 or 25-	9)
P _{FM} =	1.000	using Equati	on (Exhibit 25-5)		P _{FD} =		usi	ing Equati	ion (Exhibit	25-12)
V ₁₂ =	3144	oc/h			V ₁₂ =		рс	/h		
V ₃ or V _{av34}	-		25-4 or 25-5)		V ₃ or V _{av34}		•	h (Equation	25-15 or 25	5-16)
Is V_3 or $V_{av34} > 2,70$					Is V ₃ or V _{av}	> 2 700				,
					1					
Is V_3 or $V_{av34} > 1.5$	· -		. 0)		Is V ₃ or V _a					
		(Equation 25	-8)		If Yes,V _{12a}			/h (Equati	on 25-18)	
Capacity Che	1	1 .			Capacit					
	Actual	C	apacity	LOS F?	\ \/		Actual	1	apacity	LOS F?
	2400	E 1.1.11 05 3		J	V _F	\ <u></u>		Exhibit 25	_	
V _{FO}	3192	Exhibit 25-7		No	$V_{FO} = V_{F}$	- v _R		Exhibit 25-		
					V _R			Exhibit 25		
Flow Entering					Flow E					
	Actual		Desirable	Violation?	 	Actu		Max Des	irable I	Violation?
V _{R12}	3192	Exhibit 25-7	4600:All	No	V ₁₂			hibit 25-14		<u> </u>
Level of Serv		•						rminati		ot F)
• • • • • • • • • • • • • • • • • • • •	$0.00734 \text{ V}_{R} + 0$	0.0078 V ₁₂ - 0.0	00627 L _A			$D_{R} = 4.2$	52 + 0.00	086 V ₁₂ -	0.009 L _D	
$D_{R} = 27.2 \text{ (pc/m)}$	ni/ln)				$D_R = ($	pc/mi/ln)				
LOS = C (Exhibit	25-4)				LOS = (I	Exhibit 25	5-4)			
Speed Deteri	mination				Speed I	Determ	ination	ı		
M _S = 0.381 (Exi	bit 25-19)					Exhibit 25-1				
	(Exhibit 25-19)				$S_R = m$	nph (Exhibi	25-19)			
	Exhibit 25-19)				$S_0 = m$	nph (Exhibi	25-19)			
•	(Exhibit 25-14)					nph (Exhibi	25-15)			
·							•			

Generated: 4/20/2011 10:27 AM

		RAI	MPS AND	RAMP JUNG	CTIONS V	VORKSHI	EET				
General	Inform				Site Infor						
Analyst Agency or C Date Perforr	ompany	SKB TDO	Γ/TranSystems 8/2011	Ju	eeway/Dir of Ti nction risdiction	ravel	I-40 EI Exit 47 Haywo		ty		
Analysis Tim Project Desc		PM P Existing Condit	eak Period ions	An	alysis Year		2034				
Inputs											
Upstream Ad	dj Ramp		Terrain: Level							Downstro Ramp	eam Adj
☐ Yes	☐ On									✓ Yes	☐ On
✓ No	☐ Off									□ No	✓ Off
L _{up} =	ft		S	_{FF} = 70.0 mph		S _{FR} = 3	35 () mi	nh		L _{down} =	2000 ft
V _u =	veh/h				show lanes, L _A		, , , , , , , , , , , , , , , , , , ,	J. 1		$V_D =$	197 veh/h
Convers	sion to	pc/h Und	der Base (Conditions	· A	: D: K: I/					
(pc/h	1	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	IF x f _{HV} x f _p
Freeway		2629	0.90	Level	25	0	0.	889	1.00		3286
Ramp UpStream		58	0.90	Level	2	0	0.	990	1.00	+	65
DownStream	m	197	0.90	Level	2	0	0.	990	1.00		221
Estimat	ion of		Merge Areas			Estimat	ion (of v	Diverge Are	eas	
LStillati	ion or		(D)			LStillat	1011		., .,	\/\\D	
L _{EQ} =		V ₁₂ = V _F (Equa	(P _{FM}) ation 25-2 or	25-3)		L _{EQ} =		V ₁₂ :	= V _R + (V _F (Equation	- V _R)P _{FD} ı 25-8 or 25-	.9)
P _{FM} =				on (Exhibit 25-5)		P _{FD} =			· ·	uation (Exhibi	•
V ₁₂ =		3286 r		OTT (EXHIBIT 20 0)		V ₁₂ =			pc/h		. 20 . 27
V_3 or V_{av34}		•	n (Equation 2	25-4 or 25-5)		V ₃ or V _{av34}			•	tion 25-15 or 2	5-16)
	24 > 2,700	pc/h? TYes				1	24 > 2,	700 pc/h?	Yes		,
0 411	· .	V ₁₂ /2							☐ Yes ☐		
If Yes,V _{12a} =		· -	Equation 25	-8)		If Yes, V _{12a} =		12		ation 25-18)
Capacit			(29000011 20	<u> </u>		Capacit			po/// (=qo		/
<u>Gupuon</u>	<i>y 0.1.</i> 00	Actual	Ca	apacity	LOS F?	Joupaon	<i>y U</i>	Actua	al l	Capacity	LOS F?
				1		V _F	ĺ		Exhibit		
V _{FC}	,	3351	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R		Exhibit	25-14	
						V _R			Exhibit	25-3	
Flow En	terina	Merae In	fluence A	rea		Flow En	iterii	na Div	erae Infl	uence Ar	' ea
	Ĭ	Actual		Desirable	Violation?			Actual		Desirable	Violation?
V _{R1}	2	3351	Exhibit 25-7	4600:All	No	V ₁₂			Exhibit 25-	14	
Level of	f Servi	ce Detern	nination (i	f not F)		Level of	f Ser	vice D	etermina	ation (if n	ot F)
D _R =	5.475 + (0.00734 v _R + 0	0.0078 V ₁₂ - 0.0	0627 L _A			$D_R = \frac{1}{2}$	4.252 +	0.0086 V ₁₂	₂ - 0.009 L _D	
$D_R = 28$	3.4 (pc/mi/	'ln)				$D_R = (p)$	oc/mi/	ln)			
LOS = D	(Exhibit 2	5-4)				LOS = (E	Exhibi	t 25-4)			
Speed L	Determ	ination				Speed L	Detei	minat	ion		
$M_S = 0.$	397 (Exib	it 25-19)				1 "	xhibit :				
S _R = 58	3.9 mph (E	Exhibit 25-19)				I ''		hibit 25-1			
$S_0 = N/$		xhibit 25-19)				ľ		hibit 25-1			
	3.9 mph (E	Exhibit 25-14)				S = m	ph (Ex	hibit 25-1	5)		

Generated: 4/20/2011 10:30 AM

	RAI	MPS AND	RAMP JUNG	CTIONS W	ORKSH	EET			
General Info				Site Infor					
Analyst	SKB			eeway/Dir of Tr		I-40 WB			
Agency or Company		T/TranSystems		nction		Exit 47			
Date Performed		3/2011	Jur	isdiction		Haywood Cou	intv		
Analysis Time Perio		eak Period	An	alysis Year		2034	,		
Project Description									
Inputs	-								
Upstream Adj Ramp)	Terrain: Leve						Downstre Ramp	eam Adj
☐ Yes ☐ Oi	n							✓ Yes	□ On
✓ No ☐ Of	ff							□ No	✓ Off
L _{up} = ft								L _{down} =	2000 ft
$V_{u} = veh/h$	1	S	FF = 70.0 mph	h. L	S _{FR} = 3	35.0 mph		V _D =	58 veh/h
		<u> </u>		how lanes, L _A	$L_{D'}V_{R'}V_{f}$				
Conversion t	T *	der Base (Conditions		1	1			
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f _{HV}	f _p	v = V/PH	$F x f_{HV} x f_{p}$
Freeway	2598	0.90	Level	25	0	0.889	1.00		3248
Ramp	234	0.90	Level	2	0	0.990	1.00		263
UpStream									
DownStream	58	0.90	Level	2	0	0.990	1.00		65
		Merge Areas					Diverge Area	IS	
Estimation o	f v ₁₂				Estimat	ion of v ₁₂	2		
	V ₁₂ = V _F	(P _{EM})				V ₁ ,	$_{2} = V_{R} + (V_{F} -$	V _P)P _{ED}	
L _{EQ} =		ation 25-2 or	25-3)		L _{EQ} =	12	(Equation 2	–	9)
P _{FM} =			on (Exhibit 25-5)		P _{FD} =		using Equa		•
			OII (EXHIBIT 25-5)		1			ACIOIT (EXTIIDIT	25 12)
V ₁₂ =	3248				V ₁₂ =		pc/h	05.45	- 44)
V ₃ or V _{av34}			25-4 or 25-5)		V ₃ or V _{av34}		pc/h (Equation		o-16)
Is V_3 or $V_{av34} > 2,70$							n? ☐ Yes ☐ N		
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗹 No			Is V ₃ or V _{av}	_{/34} > 1.5 * V ₁₂ /2	2 ☐ Yes ☐ N	No	
If Yes,V _{12a} =	pc/h	(Equation 25	-8)		If Yes,V _{12a} =	=	pc/h (Equa	tion 25-18)	
Capacity Che	ecks				Capacit	y Checks	}		
	Actual	С	apacity	LOS F?		Act	ual	Capacity	LOS F?
					V _F		Exhibit 2	5-14	
V_{FO}	3511	Exhibit 25-7		No	$V_{FO} = V_{F}$	- V _R	Exhibit 2	5-14	
10					V _R		Exhibit 2	25-3	
Flow Entering	a Marga In	fluonoo A	<u></u>	<u> </u>		storing Di	verge Influ		<u> </u>
FIOW EIREIN	Actual	T .	Desirable	Violation?	FIOW EI	Actual	Max De		Violation?
V _{R12}	3511	Exhibit 25-7	4600:All	No	V ₁₂	Actual	Exhibit 25-14		v ioiation:
Level of Serv					-	f Service	 Determinat		ot F)
	- 0.00734 v _R + 0				1		+ 0.0086 V ₁₂	•	,
$D_{R} = 29.6 \text{ (pc/n)}$.,	7,0070 1 12 0.0	552, TA		1	oc/mi/ln)	1 010000 1 12	0.000 - D	
LOS = D (Exhibit					I	Exhibit 25-4))		
Speed Deteri					<u> </u>	Determina			
$M_S = 0.417 \text{ (Ex}$						Exhibit 25-19)			
_ ·	(Exhibit 25-19)					ph (Exhibit 25	-19)		
	(Exhibit 25-19)				I ''	ph (Exhibit 25			
	(Exhibit 25-14)					nph (Exhibit 25			
5 – 30.3 mpn	(EVIIINII 50-14)				<u>ار</u> ا	ihu (Evilinit 53.	10)		

		RAI	MPS AND	RAMP JUNG	CTIONS V	VORKSHI	EET				
General	Inform				Site Infor						
Analyst Agency or Co Date Performo Analysis Time	mpany ed	SKB TDO ⁻ 04/18	T/TranSystems 3/2011 Peak Period	Ju Ju	eeway/Dir of Tonction risdiction alysis Year		I-40 W Exit 47 Haywo 2034		ty		
Project Descri					,						
Inputs											
Upstream Adj	·		Terrain: Level							Downstre Ramp	eam Adj
	On									✓ Yes	☐ On
™ No	Off									□ No	Off
L _{up} =	ft		S	_{FF} = 70.0 mph		S _{FR} = 3	35.0 mi	oh		L _{down} =	2000 ft
V _u =	veh/h				show lanes, L _A		,			$V_D =$	61 veh/h
Conversi	ion to	pc/h Und	der Base (Conditions	. А	r Dr Rr Ir					
(pc/h)		V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PH	F x f _{HV} x f _p
Freeway		2735	0.90	Level	25	0	0.	889	1.00		3419
Ramp		127	0.90	Level	2	0	0.	990	1.00		143
UpStream			.				1				
DownStream		61	0.90	Level	2	0	0.	990	1.00		68
Estimation	on of v		Merge Areas			Estimat	ion d	of V ₁₂	Diverge Are	eas	
		V ₁₂ = V _F	(P)			1			= V _R + (V _F	- V_)P	
l =			or ition 25-2 or	25-3)		=		* 12		25-8 or 25-	a)
L _{EQ} = P _{FM} =				on (Exhibit 25-5)		L _{EQ} = P _{FD} =				ation (Exhibi	•
V ₁₂ =		3419 r		OII (EXHIBIT 25-5)		V ₁₂ =			pc/h	action (Exhibi	(25-12)
V ₃ or V _{av34}		•	n (Equation 2	5-4 or 25-5)		V_{3}^{12} or V_{av34}			•	tion 25-15 or 2	5-16)
Is V_3 or V_{av34}	> 2 700 i			.5-4 01 25-5)		1	> 2	700 nc/h?	Yes		J-10)
Is V_3 or V_{av34}									Yes =		
If Yes,V _{12a} =				۵/						ino ation 25-18)	
			(Equation 25	-0)		If Yes,V _{12a} =		- ooko	pc/II (⊑qu	alion 25-16,	
Capacity	Cnec		1 0	an a altre	LOS F?	Capacit	y Ch		.i [Canacity	1,00,50
		Actual		apacity	LUSF?	V _F		Actua	Exhibit	Capacity	LOS F?
\/		25/2	Fyhih!# 0F 7		No		1/				_
V _{FO}		3562	Exhibit 25-7		No	$V_{FO} = V_{F}$	- v _R		Exhibit		_
						V _R			Exhibit		
Flow Ent	ering		fluence A			Flow En	_			uence Are	*
\/		Actual	` 	Desirable	Violation?	\/	1	Actual	1	Desirable	Violation?
V _{R12}	<u> </u>	3562	Exhibit 25-7	4600:All	No	V ₁₂	(C =	ulas 5	Exhibit 25-		
			<u>nination (i</u>			_				ation (if n	ot F)
,,		• • • • • • • • • • • • • • • • • • • •	0.0078 V ₁₂ - 0.0	UUZI LA					0.0000 V ₁₂	₂ - 0.009 L _D	
1.	1 (pc/mi/lr					"	oc/mi/l	•			
	Exhibit 25							t 25-4)	•		
Speed De						Speed L			ion		
3	23 (Exibit	•				° '	xhibit 2	•	0)		
$S_{R} = 58.$	1 mph (E)	khibit 25-19)				I ''	•	hibit 25-1			
_ ~		hibit 25-19)				ľ	•	hibit 25-1			
S = 58.	1 mph (E)	(hibit 25-14)				S = m	ph (Ex	hibit 25-1	5)		

Generated: 4/20/2011 10:31 AM

Diverge Ramps Highway Capacity Software Computer Printouts

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKSI	HEET			
General II	nformation			Site Infor		<u></u> -	-			
Analyst Agency or Com Date Performed	SKB npany TDO	T/TranSystems 8/2011	J	reeway/Dir of Trunction urisdiction	avel	I-40 EB Exit 35 Fayette	County			
Analysis Time F	Period AM I	Peak Period	А	nalysis Year		2014				
Project Descrip	tion Existing Cond	itions								
Inputs		1						-		
Upstream Adj F	,	Terrain: Leve	·l						Downstrear Ramp	n Adj
	▼ On Off									□ On
	000 ft								No L _{down} =	Off ft
ap	01 veh/h	S	FF = 70.0 mph	show lanes, L _A	$S_{FR} = 3$	35.0 mph	1			veh/h
Conversion	on to pc/h Un	der Base (А	' D' R' I'					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	v = V/PHF >	k f _{HV} x f _p
Freeway	2096	0.90	Level	25	0	0.8	189	1.00	262	0
Ramp	184	0.90	Level	3	0	0.9	85	1.00	208	3
UpStream	201	3	0	0.9	85	1.00	227	7		
DownStream										
Cotino o tio		Merge Areas			[Cating at			erge Areas		
Estimatio	n or v ₁₂				Estimat	ion o	1 ₂			
	$V_{12} = V_F$	(P _{FM})					V ₁₂ = \	$V_R + (V_F - V_F)$	R)P _{FD}	
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		(Ed	quation 25-8	or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		1.00	0 using Eq	uation (Exhil	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		2620	pc/h		
V_3 or V_{av34}	pc/h	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}		0 p	c/h (Equatio	n 25-15 or	25-16)
Is V ₃ or V _{av34} >	> 2,700 pc/h? 🥅 Ye	s 🗏 No			Is V ₃ or V _{av3}	34 > 2,70	00 pc/h? 🦳	Yes 🗹 No		
Is V ₃ or V _{av34} >	> 1.5 * V ₁₂ /2	s 🗏 No			Is V ₃ or V _{av}	₃₄ > 1.5	* V ₁₂ /2	Yes ✓ No		
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes, V _{12a} =	=	pc/	h (Equation	25-18)	
Capacity					Capacit					
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F		2620	Exhibit 25-1	4 4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _D	2412	Exhibit 25-1	4800	No
					V _R	$\overline{}$	208	Exhibit 25-3		No
Flow Ente	ring Morgo I	ofluonoo 1	roo			torin		e Influen		110
FIOW EITE	ering Merge Ir Actual	7	Desirable	Violation?	FIOW EII		ctual	Max Desirab		Violation?
V _{R12}	Actual	Exhibit 25-7	Desirable	Violation:	V ₁₂	_		Exhibit 25-14	4400:All	No
	Service Deteri		if not E)					erminatio		
	5 + 0.00734 v _R +	<u> </u>						086 V ₁₂ - 0.	•	<i>)</i>
		0.0070 V ₁₂	0.00021 LA		1			000 v ₁₂ - 0.	009 ∟ D	
l '` "	mi/ln)				1 .,	2.3 (pc/	•			
	nibit 25-4)						it 25-4)			
	termination				Speed L					
M _S = (Exi	bit 25-19)				l s	-	chibit 25-1	•		
S _R = mph	(Exhibit 25-19)				1 '`	•	(Exhibit 2	•		
4					IC N	/ A	E 1 11 14 OF	. 40\		
	(Exhibit 25-19) (Exhibit 25-14)				$S_0 = N/$	A mpn	Exhibit 25	5-19)		

		RAMP	S AND RAM	IP JUNCT	IONS WO	RKSI	HEET			
General Info	rmation			Site Info			-			
Analyst Agency or Compar Date Performed Analysis Time Peri	SKB ny TDO 04/18	T/TranSystem: 8/2011 Peak Period	s Ji Ji	reeway/Dir of T unction urisdiction nalysis Year	ravel	I-40 EB Exit 35 Fayette 2014	County			
Project Description				a.yo.o . oa.		2011				
Inputs	<u> </u>									
Upstream Adj Ram	•	Terrain: Leve	el						Downstrea Ramp	m Adj
Yes C									☐ Yes	☐ On
□ No □ C	Off								✓ No	Off
L _{up} = 2000	ft		$S_{FF} = 70.0 \text{mph}$		S _{FR} = 3	35 () mpl	1		L _{down} =	ft
u .	veh/h		Sketch (show lanes, L _A		50.0 mpi	'		V _D =	veh/h
Conversion		der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		: HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	1808	0.90	Level	25	0	_	389	1.00	220	
Ramp	239	0.90	Level	3	0		985	1.00	27	
UpStream	156	0.90	Level	3	0	0.9	985	1.00	17	6
DownStream		<u> </u> Merge Areas			1		 Div	/erge Areas		
Estimation of		ivierge Areas			Estimat	ion o		reige Aleas		
	V ₁₂ = V _F	(P)			1			/ _R + (V _F - V _F	\P	
l –		ation 25-2 o	r 25_3)		-			quation 25-8		
L _{EQ} = D _		Equation (•		L _{EQ} =		-	ousing Eq	-	hit 25 12)
P _{FM} = V ₁₂ =	-	Lqualion (EXHIBIT 25-5)		P _{FD} =				ualion (Exil	DII 23-12)
	pc/h	(Equation 2	5 4 or 25 5)		V ₁₂ =			0 pc/h	OF 4F ar	OF 4C\
V ₃ or V _{av34}	-	-	5-4 01 25-5)		V ₃ or V _{av34}	> 2.70		oc/h (Equatio)II 25-15 OF	25-16)
Is V_3 or $V_{av34} > 2$,								Yes ✓ No		
Is V_3 or $V_{av34} > 1.5$	·=		- o)					Yes ✓ No	05.40)	
If Yes,V _{12a} =		(Equation 2	o-8)					/h (Equation	25-18)	
Capacity Ch	7	1 .		1	Capacit	y Che		1 -		1
	Actual	(Capacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual		pacity	LOS F?
					V _F		2260	Exhibit 25-1	_	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	1990	Exhibit 25-1		No
					V _R		270	Exhibit 25-3	2000	No
Flow Enterii	ng Merge In	fluence A	\ <i>rea</i>		Flow En	nterin	g Diverg	ge Influen	ce Area	
	Actual	1	Desirable	Violation?		Α	ctual	Max Desirab		Violation?
V _{R12}		Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No
Level of Ser		`						erminatio	•	<u>F) </u>
$D_R = 5.475 + 0$	0.00734 v _R +	0.0078 V ₁₂	- 0.00627 L _A			$D_R = 4$.252 + 0.0	086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi/	ln)				$D_R = 10$	9.2 (pc /	mi/ln)			
LOS = (Exhibi	t 25-4)				LOS = B	(Exhib	it 25-4)			
Speed Deter	rmination				Speed L	Deteri	nination	1		
M _S = (Exibit	 25-19)				D _s = 0.	452 (E)	chibit 25-1	9)		
	(hibit 25-19)				$S_R = 5$	7.3 mph	(Exhibit 2	5-19)		
	(hibit 25-19)				$S_0 = N$	/A mph	(Exhibit 25	5-19)		
' '	(hibit 25-14)				S = 5	7.3 mph	(Exhibit 2	5-15)		
. ,	· · · · · · · · · · · · · · · · · · ·						•	•		

Generated: 4/20/2011 10:34 AM

		RAMP	S AND RAM	IP JUNCT	IONS WO	RKSI	HEET			
General Info	rmation			Site Info			-			
Analyst Agency or Compan Date Performed Analysis Time Peric	SKB y TDO 04/18	T/TranSystems 8/2011	s Ji Ji	reeway/Dir of T unction urisdiction	ravel	I-40 WB Exit 35 Fayette				
Project Description		Peak Period	A	nalysis Year		2014				
Inputs	Existing Condi	liulis								
Upstream Adj Ramı	0	Terrain: Leve	el						Downstrea	m Adj
✓ Yes ✓ O	n								Ramp Yes	☐ On
□ No □ O	ff								✓ No	Off
L _{up} = 2000	ft		$S_{FF} = 70.0 \text{ mph}$		S _{FR} = 3	25 0 mnh	.		L _{down} =	ft
$V_u = 274 \text{ N}$	/eh/h		!!	show lanes, L _A		33.0 mpi	I		V _D =	veh/h
Conversion	to pc/h Un	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	1702	0.90	Level	25	0	3.0	189	1.00	212	28
Ramp	126	0.90	Level	3	0	0.9	85	1.00	14	2
UpStream	274	3	0	0.9	85	1.00	30	9		
DownStream					<u> </u>					
Estimation of		Merge Areas			Estimat	ion o		verge Areas		
Estimation o					Esumat	1011 0				
	$V_{12} = V_{F}$							/ _R + (V _F - V _F		
L _{EQ} =	· · ·	ation 25-2 o	•		L _{EQ} =		•	quation 25-8	-	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		1.00	00 using Eq	uation (Exh	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		212	8 pc/h		
V ₃ or V _{av34}	-	(Equation 2	5-4 or 25-5)		V_3 or V_{av34}		0 p	c/h (Equatio	on 25-15 or	25-16)
Is V_3 or $V_{av34} > 2.7$	00 pc/h?	s 🗏 No			Is V ₃ or V _{av}	₃₄ > 2,70	00 pc/h? 🥅	Yes 🗹 No		
Is V ₃ or V _{av34} > 1.5	* V ₁₂ /2	s 🗏 No			Is V ₃ or V _{av}	₃₄ > 1.5	* V ₁₂ /2	Yes 🗹 No		
If Yes,V _{12a} =	pc/h	(Equation 2	5-8)		If Yes,V _{12a} =	=	pc	h (Equation	25-18)	
Capacity Ch					Capacit					
	Actual	(Capacity	LOS F?	ĺ		Actual	Ca	pacity	LOS F?
					V _F		2128	Exhibit 25-14	4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	1986	Exhibit 25-1	4 4800	No
					V _R		142	Exhibit 25-3	2000	No
Flow Enterin	na Merae Ir	ofluence A	lrea			nterin		ge Influen		
- 1011 - 11101111	Actual	7	Desirable	Violation?	1.0.7.		ctual	Max Desirab		Violation?
V _{R12}		Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No
Level of Serv	vice Detern	nination (if not F)			f Serv	ice Dete	erminatio	n (if not l	<u> </u>
$D_R = 5.475 + 0$								086 V ₁₂ - 0.	•	,
D _R = (pc/mi/li	• • • • • • • • • • • • • • • • • • • •	12	A			8.1 (pc /		12	U	
LOS = (Exhibit	•				1 ''		it 25-4)			
Speed Deter	•				Speed L	-		•		
$M_S = (Exibit 2)$					 '		hibit 25-1			
_	hibit 25-19)					7.7 mph	(Exhibit 2	5-19)		
	hibit 25-19)						` Exhibit 25	•		
' '	hibit 25-14)				'		(Exhibit 2	•		
						, , , , , , , , , , , , , , , , , , ,	(=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- 10,		

		RAMP	S AND RAM	P JUNCT	ONS WO	ORKS	HEET			
General Info	rmation			Site Infor						
Analyst	SKB		Fr	eeway/Dir of T		I-40 WI	3			
Agency or Compan	ny TDO	T/TranSystems	s Ju	nction		Exit 35				
Date Performed	04/18	3/2011	Ju	risdiction		Fayette	County			
Analysis Time Perio	od PM P	Peak Period	Ar	nalysis Year		2014	-			
Project Description	Existing Condi	tions		•						
Inputs										
Upstream Adj Ram		Terrain: Leve)						Downstrean Ramp	n Adj
✓ Yes ✓ C	On								-	☐ On
□ No □ C	Off								™ No	Off
L _{up} = 2000	ft		70.0			25.0			L _{down} =	ft
V _u = 177 ·	veh/h	5	S _{FF} = 70.0 mph Sketch (s	show lanes, L _A	$S_{FR} = L_{D_f} V_{D_f} V_f$	35.0 mp	h		V _D =	veh/h
Conversion	to pc/h Und	der Base			DKT					
(pc/h)	V	PHF	Terrain	%Truck	%Rv	\top	f	f	v = V/PHF x	f v f
* '	(Veh/hr)			ļ	 		f _{HV}	<u>'</u>		
Freeway	2129	0.90	Level	25	0	_	889	1.00	266	
Ramp	182	0.90	Level	3	0		985	1.00	205	
UpStream DownStream	177	0.90	Level	3	0	0.	985	1.00	200)
Downstream		<u>I</u> Merge Areas			1		I Div	erge Areas		
Estimation of		<u> </u>			Estima	tion c		<u>. J </u>		
	V ₁₂ = V _F	(P)			1		- '-	/ _R + (V _F - V _I	\P	
l –		ation 25-2 o	r 25-3)		-		.=	quation 25-8		
L _{EQ} = D =	· · ·	Equation (· ·		L _{EQ} =		•	-	uation (Exhib	\i+ 2E 12\
P _{FM} = V _	pc/h	Lquation (P _{FD} =				juation (Exilia	JIL 25-12)
V ₁₂ =	•	·=			V ₁₂ =			1 pc/h		
V ₃ or V _{av34}		(Equation 25	o-4 or 25-5)		V ₃ or V _{av34}		-		on 25-15 or 2	25-16)
Is V_3 or $V_{av34} > 2.7$								Yes 🗹 No		
Is V_3 or $V_{av34} > 1.5$	5 * V ₁₂ /2	s 🗆 No			Is V ₃ or V _a	_{v34} > 1.5	* V ₁₂ /2	Yes 🗹 No		
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a}	=	pc/	h (Equation	25-18)	
Capacity Ch	ecks				Capaci					
	Actual		Capacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F		2661	Exhibit 25-1	4 4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{FO}$	- V _R	2456	Exhibit 25-1	4 4800	No
]					V _R		205	Exhibit 25-3	3 2000	No
Flow Enterir	na Merae In	fluence A	\rea				a Diverd	e Influen	ce Area	
- 1013 - 110111	Actual	1	Desirable	Violation?	1		Actual	Max Desirat		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	_		Exhibit 25-14	4400:All	No
Level of Ser	vice Detern		if not F)	<u> </u>					n (if not F	
$D_R = 5.475 + 0$					1			086 V ₁₂ - 0.		<i>,</i>
D _R = (pc/mi/l		12	A		$D_R = 2$	- k 2.6 (pc		12	U	
LOS = (Exhibit	•						oit 25-4)			
Speed Deter	•				+		mination	,		
•					 ' 		xhibit 25-1			
	•						(Exhibit 2	-		
_ ``	(hibit 25-19)				I ''		(Exhibit 25	-		
' '	(hibit 25-19)				1 '	•	•	•		
S = mph(Ex	(hibit 25-14)				S = 5	nqm c.v	(Exhibit 2)-10)		

		RAMP	S AND RAM	P JUNCTI	ONS WC	RKS	HEET			
General Infor	mation			Site Infor						
Analyst	SKB		Fre	eeway/Dir of Ti		I-40 EB				
Agency or Company	TDO ⁻	T/TranSystems	Ju	nction		Exit 35				
Date Performed	04/18	3/2011	Jui	risdiction		Fayette	County			
Analysis Time Period	d AM P	Peak Period	An	alysis Year		2034				
Project Description	Existing Condit	tions								
Inputs		_								
Upstream Adj Ramp		Terrain: Leve	I						Downstream Ramp	n Adj
Yes Or	ı								-	On
□ No □ Of	f								✓ No	Off
L _{up} = 2000	ft								L _{down} =	ft
V _u = 237 ve	eh/h	S	FF = 70.0 mph Sketch (s	show lanes, L _A	$S_{FR} = L_{D_t} V_{D_t} V_f$	35.0 mp	h	,	$V_D = v$	veh/h
Conversion t	o pc/h Und	der Base (. А	D' K' I'					
	<i>∨ ∨</i>			0/ =1	0/5	1	<u>, </u>	<u>,</u>	., \//D!!E	44
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF x	τ _{HV} x t _p
Freeway	2838	0.90	Level	25	0	0.8	889	1.00	3548	3
Ramp	274	0.90	Level	3	0	0.9	985	1.00	309	
UpStream	237	0.90	Level	3	0	0.	985	1.00	267	
DownStream	<u> </u>	Marga Arasa			1		Div			
Estimation of		Merge Areas			Estima	tion o		erge Areas		
LStillation of					LSuma		12			
	$V_{12} = V_{F}$.=	′ _R + (V _F - V _F		
L _{EQ} =	(Equa	ation 25-2 or	25-3)		L _{EQ} =		(Ed	quation 25-8	or 25-9)	
P _{FM} =	using	Equation (E	Exhibit 25-5)		P _{FD} =		1.00	0 using Eq	uation (Exhib	it 25-12)
V ₁₂ =	pc/h				V ₁₂ =		3548	B pc/h		
V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			•	n 25-15 or 2	25-16)
Is V_3 or $V_{av34} > 2,70$			101200)			> 2.7	-	Yes ☑ No	11 20 10 01 2	-0 10)
Is V_3 or $V_{av34} > 1.5$								Yes ☑ No		
If Yes,V _{12a} =		(Equation 25	5-8)					h (Equation	25-18)	
Capacity Che	cks				Capaci	ty Che	ecks	_		
	Actual	С	apacity	LOS F?			Actual		pacity	LOS F?
					V _F		3548	Exhibit 25-14	4 4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	3239	Exhibit 25-14	4800	No
					V_R		309	Exhibit 25-3	2000	No
Flow Entering	a Merae In	fluence A	rea		Flow E	nterin	a Diverd	e Influen	ce Area	•
	Actual	*	Desirable	Violation?	1	_	Actual	Max Desirab	-	Violation?
V _{R12}		Exhibit 25-7			V ₁₂	3	548 E	Exhibit 25-14	4400:All	No
Level of Serv	ice Detern		if not F)	Į.		f Serv			n (if not F	
$D_R = 5.475 + 0.$					1			086 V ₁₂ - 0.0		<u> </u>
D _R = (pc/mi/ln	• • •	- 12	A		$D_R = 3$	0.3 (pc/		12	U	
LOS = (Exhibit :	•				1 "		oit 25-4)			
,	•					-		•		
Speed Deterr					 '		mination			
$M_S = (Exibit 28)$	•				ľ	-	xhibit 25-1	•		
	ibit 25-19)				I ''		(Exhibit 2	-		
$S_0 = mph (Exh$	ibit 25-19)				$S_0 = N$	I/A mph	(Exhibit 25	-		
S = mph (Exh	ibit 25-14)				S = 5		(Exhibit 2			

		RAMP	S AND RAM	IP JUNCT	ONS WO	RKSI	HEET			
General Info	rmation		***	Site Info						
Analyst Agency or Compan Date Performed	SKB y TDO 04/18	T/TranSystems 8/2011	s Ji Ji	reeway/Dir of T unction urisdiction	ravel	I-40 EB Exit 35 Fayette				
Analysis Time Perion Project Description		Peak Period	A	nalysis Year		2034				
Inputs	Existing Condi	1110115								
Upstream Adj Ramı	0	Terrain: Leve	el						Downstrea	m Adj
✓ Yes ✓ O	n								Ramp Yes	□ On
□ No □ O	ff								✓ No	Off
L _{up} = 2000	ft		$S_{FF} = 70.0 \text{ mph}$		S _{FR} = 3	25 0 mnl	<u> </u>		L _{down} =	ft
$V_u = 204 \text{ N}$	/eh/h		!!	show lanes, L _A	1 11	33.0 mpi	1		V _D =	veh/h
Conversion	to pc/h Un	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2603	0.90	Level	25	0	0.8	389	1.00	325	54
Ramp	355	0.90	Level	3	0	0.9	985	1.00	40	0
UpStream	204	0.90	Level	3	0	0.9	985	1.00	23	0
DownStream		<u> </u>			ļ					
Estimation o		Merge Areas			Ectimot	ion o		verge Areas		
Estimation o					Estimat	1011 0				
	$V_{12} = V_{F}$							$V_R + (V_F - V_F)$		
L _{EQ} =	· · ·	ation 25-2 o	•		L _{EQ} =		•	quation 25-8	-	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		1.00	00 using Eq	uation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		325	4 pc/h		
V ₃ or V _{av34} Is V ₃ or V _{av34} > 2,7	-	(Equation 25	5-4 or 25-5)		V_3 or V_{av34}	> 2.70	-	oc/h (Equatio Yes	on 25-15 or	25-16)
Is V ₃ or V _{av34} > 1.5								Yes ✓ No		
If Yes,V _{12a} =	·=		5-8)					/h (Equation	25-18)	
Capacity Ch		(Equation 2)	3 0)		Capacit			TT (Equation	20 10)	
Capacity Off	Actual		Capacity	LOS F?	Joapach	y On	Actual	Са	pacity	LOS F?
	ricidal		Jupucky	1 2001.	V _F	\dashv	3254	Exhibit 25-1		No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	_	2854	Exhibit 25-1	+	No
*FO		LATIIDIL 23-7				_		Exhibit 25-3		
<u> </u>	<u> </u>	<u> </u>			V _R		400			No
Flow Enterin		T .		1 Walatiano	Flow Er	_	-	ge Influen		\/:- -+:
V _{R12}	Actual	Exhibit 25-7	Desirable	Violation?	V ₁₂		octual 254	Max Desirab Exhibit 25-14	4400:All	Violation?
Level of Serv	vice Deterr		if not F)					erminatio		
$D_{R} = 5.475 + 0$								086 V ₁₂ - 0.	•	/
	• • • • • • • • • • • • • • • • • • • •	0.0070 V ₁₂	0.00021 LA					1000 v ₁₂ - 0.	oos LD	
	•				··	7.7 (pc/	•			
LOS = (Exhibit	•						oit 25-4)			
Speed Deter					Speed L					
$M_S = (Exibit 2)$	•				, and a		xhibit 25-1	•		
$S_{R}^{=}$ mph (Ex	hibit 25-19)				· ` `		(Exhibit 2	•		
	hibit 25-19)				1 *		(Exhibit 2	•		
S = mph(Ex	hibit 25-14)				S = 5	7.0 mph	(Exhibit 2	5-15)		

Generated: 4/20/2011 10:36 AM

		RAMP	S AND RAM	P JUNCTI	ONS WC	RKS	HEET			
General Info	rmation			Site Infor						
Analyst Agency or Compan Date Performed	SKB y TDO ⁻ 04/18	T/TranSystems	s Ju Ju	eeway/Dir of Tr nction risdiction			3 County			
Analysis Time Perion Project Description		eak Period	Ar	nalysis Year		2034				
Inputs	Existing Condi	lions								
Upstream Adj Rami	n	Terrain: Leve	 el					Į,	Downstrea	m Δdi
✓ Yes ✓ O								F	Ramp	
□No □O	off									☐ On ☐ Off
L _{up} = 2000	ft		70.0			05.0			-down =	ft
$V_u = 408 \text{V}$	veh/h		$S_{FF} = 70.0 \text{ mph}$ Sketch (s	show lanes, L _A ,	$S_{FR} = L_{D'}V_{R'}V_{f}$	35.0 mp	n	\	V _D =	veh/h
Conversion	to pc/h Und	der Base	Conditions							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	/ = V/PHF	x f _{HV} x f _p
Freeway	2472	0.90	Level	25	0	0.	889	1.00	309	0
Ramp	159	0.90	Level	3	0	0.	985	1.00	17	9
UpStream	408	0.90	Level	3	0	0.	985	1.00	46	0
DownStream		 Merge Areas			1			iverge Areas		
Estimation o		ivierge Areas			Estimat	tion o		iverge Areas		
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _R)P _{ED}	
L _{EQ} =	12 1	ation 25-2 o	r 25-3)		L _{EQ} =			equation 25-8		
P _{FM} =		Equation (•		P _{FD} =		•	00 using Equ	•	bit 25-12)
V ₁₂ =	pc/h	,	,		V ₁₂ =			90 pc/h	, , , , , , , , , , , , , , , , , , ,	
V ₃ or V _{av34}	•	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equatio	n 25-15 or	25-16)
Is V_3 or $V_{av34} > 2.7$,					Yes 🗹 No	20 10 01	20 .0,
Is V ₃ or V _{av34} > 1.5								Yes ✓ No		
If Yes, V _{12a} =	· -		5-8)						25-18)	
Capacity Ch		(Equation 2)	5-0)		Capacit			c/h (Equation	20-10)	
Capacity Cit	Actual	I (Capacity	LOS F?	Capacit	iy Ciri	Actual	Car	acity	LOS F?
	Actual		zapacity	LOST:	V _F	$\overline{}$	3090	Exhibit 25-14	T -	No
\/		Exhibit 25-7			$V_{FO} = V_{F}$		2911	Exhibit 25-14		
V _{FO}		LAHIDIL 25-7						_	 	No
<u> </u>	<u> </u>				V _R		179	Exhibit 25-3	2000	No
Flow Enterin				Violation?	FIOW EI	_	-	ge Influenc		Violation
V _{R12}	Actual	Exhibit 25-7	Desirable	Violation?	V ₁₂	_	Actual 8090	Max Desirabl Exhibit 25-14	e 4400:All	Violation? No
Level of Serv	vice Detern		if not F)					ermination		
$D_R = 5.475 + 0$					1			0086 V ₁₂ - 0.0	•	/
D _R = (pc/mi/li	• • • • • • • • • • • • • • • • • • • •	- 12	A		L	6.3 (pc		12	U	
LOS = (Exhibit	•				1		oit 25-4)			
Speed Deter					Speed			n		
$M_S = $ (Exibit 2					' ' 		xhibit 25-			
	hibit 25-19)				1	7.6 mph	(Exhibit 2	25-19)		
l '`	hibit 25-19)						Exhibit 2	•		
	hibit 25-14)				1	•	(Exhibit 2	•		
	· · · · · · · · · · · · · · · · · · ·						*	,		

Generated: 4/20/2011 10:36 AM

		RAMP	S AND RAM	IP JUNCT	ONS WO	RKSI	HEET			
General Info	rmation			Site Infor			<u> </u>			
Analyst Agency or Compan Date Performed	SKB y TDO	T/TranSystems 8/2011	s Ju	reeway/Dir of Touristion	ravel	I-40 WB Exit 35 Fayette				
Analysis Time Perio		Peak Period	A	nalysis Year		2034				
Project Description	Existing Condi	tions								
Inputs		l a	. 1					1		
Upstream Adj Ram	'	Terrain: Leve	ĐI						Downstrea Ramp	m Adj
✓ Yes✓ O✓ No✓ O									Yes	□ On
									No L _{down} =	Off ft
$V_{up} = 2000$ $V_{u} = 263$ v		S	S _{FF} = 70.0 mph	chow lance I	S _{FR} = 3	35.0 mpl	ı		-down V _D =	veh/h
		dor Doos		show lanes, L _A	' LD' VR' Vf)				_	
Conversion	to pc/n Uno			T	1	_	Т	1		
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv		HV	· ·	v = V/PHF	
Freeway	2912	0.90	Level	25	0	_	389	1.00	364	
Ramp	216	0.90	Level	3	0		985	1.00	24	
UpStream	263	0.90	Level	3	0	0.9	985	1.00	29	7
DownStream		<u> </u> Merge Areas			1		I	/erge Areas		
Estimation of		Weige Areas			Estimat	ion o		reige Aicus		
	V ₁₂ = V _F	(P _{5M})			+			/ _R + (V _F - V _F)P _{EP}	
L _{EQ} =		tion 25-2 o	r 25-3)		L _{EQ} =			quation 25-8		
P _{FM} =		Equation (· ·		P _{FD} =		•	00 using Eq	-	hit 25-12)
V ₁₂ =	pc/h	_900.0 (V ₁₂ =			0 pc/h	addon (Emi	1011 20 12)
V ₃ or V _{av34}	•	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34}			oc/h (Equatio	on 25-15 or	25-16)
Is V ₃ or V _{av34} > 2,7	=		3 1 01 20 0)			> 2 7(Yes ☑ No	711 20 10 01	20 10)
Is V_3 or $V_{av34} > 2,7$								Yes ✓ No		
	·=		5-8)						25-18)	
If Yes,V _{12a} =		(Lqualion 2)	J-0)		_			h (Equation	23-10)	
Capacity Ch	Ť	I (`anaaitu	LOS F?	Capacit	y Crie		l Co.	pacity	LOS F?
	Actual		Capacity	LUST	V _F		Actual 3640	Exhibit 25-1		No
. ,		Exhibit 25-7							+	
V _{FO}		EXHIBIT 23-7			$V_{FO} = V_{F}$		3396	Exhibit 25-1	+	No
					V _R		244	Exhibit 25-3		No
Flow Enterin	7	7		1 1/1 1/1 0	Flow Er			ge Influen		\" \ \" \ O
V _{R12}	Actual	Max Exhibit 25-7	Desirable	Violation?	V ₁₂		ctual 640 l	Max Desirab Exhibit 25-14	4400:All	Violation?
	vice Deter		if not El	<u> </u>						
Level of Service $D_R = 5.475 + 0$		•						erminatio 086 V ₁₂ - 0.0	•)
		0.0070 V ₁₂	0.00021 LA					1000 v ₁₂ - 0.	oos LD	
"	•				··	1.1 (pc/	-			
LOS = (Exhibit	•					-	it 25-4)			
Speed Deter					Speed L					
$M_S = (Exibit 2)$	-				l "	-	chibit 25-1	-		
"	hibit 25-19)				I		(Exhibit 2	-		
	hibit 25-19)				1 *		(Exhibit 25	-		
S = mph (Ex	hibit 25-14)				S = 5	7.4 mph	(Exhibit 2	5-15)		

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET			
General Infor	mation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Perioo Project Description	SKB TDO 04/18 d AM F	T/TranSystems 3/2011 Peak Period	ն Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year	ravel	I-40 EB Exit 42 Fayette 2014	County			
Inputs	Existing Condi	lions								
Upstream Adj Ramp		Terrain: Leve	el						Downstrea Ramp	m Adj
✓ Yes ✓ Or									Yes	□ On
No Of $L_{up} = 2000$									No L _{down} =	Off ft
$V_u = 232 \text{ Ve}$		S	S _{FF} = 70.0 mph Sketch (show lanes, L _A	S _{FR} = 3	35.0 mp	h		V _D =	veh/h
Conversion to	o pc/h Und	der Base		Α	י טי אי וי					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	1582	0.90	Level	25	0	0.	889	1.00	197	78
Ramp	715	0.90	Level	3	0	0.	985	1.00	80	6
UpStream	232	0.90	Level	3	0	0.	985	1.00	26	2
DownStream	<u> </u>	Marga Araaa			1			Nivers Areas		
Estimation of		Merge Areas			Estimat	ion o		iverge Areas		
		(D)			Louman			\	\D	
	$V_{12} = V_F$. 05. 0)					$V_R + (V_F - V_F)$		
L _{EQ} =		ation 25-2 o	•		L _{EQ} =		•	Equation 25-8	•	05 40)
P _{FM} =		Equation (I	=XNIDIT 25-5)		P _{FD} =			000 using Eq	luation (Exh	bit 25-12)
V ₁₂ =	pc/h	<i>(</i> = o			V ₁₂ =			78 pc/h		
V ₃ or V _{av34} Is V ₃ or V _{av34} > 2,70		(Equation 25 s No	o-4 or 25-5)		V_3 or V_{av34} Is V_3 or V_{av}	, ₃₄ > 2,7		pc/h (Equation Yes ☑ No	on 25-15 or	25-16)
Is V_3 or $V_{av34} > 1.5$					0 4.	0.		Yes ✓ No		
If Yes,V _{12a} =	· -		5-8)		l o uv	01	12	c/h (Equation	25-18)	
Capacity Che		(,		Capacit			(1	/	
	Actual		Capacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F		1978	Exhibit 25-1	4 4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	1172	Exhibit 25-1	4 4800	No
					V _R		806	Exhibit 25-3	2000	No
Flow Entering	a Merae In	fluence A	\rea			nterin		rge Influen		
	Actual		Desirable	Violation?	1 1011	_	Actual	Max Desirab		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	1	978	Exhibit 25-14	4400:All	No
Level of Serv	ice Detern	nination (if not F)			f Serv	∕ice De	terminatio	n (if not l	=)
$D_R = 5.475 + 0.$					+			.0086 V ₁₂ - 0.		-
D _R = (pc/mi/ln)				D _R = 16	6.8 (pc ,	/mi/ln)		_	
LOS = (Exhibit :	25-4)				I '''		oit 25-4)			
Speed Deterr	<u>-</u>				Speed L	-		on		
$M_S = $ (Exibit 2					 ' 		xhibit 25-			
	nibit 25-19)				1	6.0 mph	(Exhibit	25-19)		
	nibit 25-19)					/A mph	(Exhibit 2	25-19)		
S = mph (Exh	nibit 25-14)						(Exhibit			
					-					

Generated: 4/20/2011 10:38 AM

		RAMP	S AND RAM	P JUNCTI	ONS WC	RKS	HEET			
General Infor	rmation			Site Infor						
Analyst Agency or Company Date Performed Analysis Time Period	SKB TDO 04/18 d PM P	Γ/TranSystem: 3/2011 Peak Period	s Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year	avel	I-40 EE Exit 42 Fayette 2014				
Project Description	Existing Condit	tions								
Inputs		T	-1					1		
Upstream Adj Ramp		Terrain: Leve	el						Downstrear Ramp	m Adj
✓ Yes ✓ Or	า								-	□ On
□ No □ Of	f								™ No	Off
L _{up} = 2000	ft		S _{FF} = 70.0 mph		S _{FR} =	35 0 mr	sh.	L	-down =	ft
$V_u = 367 \text{ v}$	eh/h		• •	show lanes, L _A ,		55.0 mp	,,,,		$V_{\rm D} =$	veh/h
Conversion t	o pc/h Und	der Base		A'	D' R' I'					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	/ = V/PHF :	x f _{HV} x f _p
Freeway	1567	0.90	Level	25	0	0.	889	1.00	195	i9
Ramp	397	0.90	Level	3	0	0.	985	1.00	44	8
UpStream	367	0.90	Level	3	0	0.	985	1.00	41	4
DownStream		 Merge Areas					<u> </u>	iverge Areas		
Estimation of		weige Areas			Estima	tion c		iverge Areas		
	V ₁₂ = V _F	(P)			1			V _R + (V _F - V _R	\P	
L _{FO} =	12 1	ation 25-2 o	r 25-3)		L _{EQ} =			equation 25-8		
L _{EQ} = P _{FM} =		Equation (· ·		P _{FD} =			000 using Equ	=	hit 25-12)
V ₁₂ =	pc/h		,		V ₁₂ =			59 pc/h		J. 20 .2)
V ₃ or V _{av34}	•	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equatio	n 25-15 or	25-16)
Is V ₃ or V _{av34} > 2,70			,					Yes ✓ No		,
Is V_3 or $V_{av34} > 1.5$								Yes ✓ No		
If Yes,V _{12a} =	· -		5-8)				· -	c/h (Equation	25-18)	
Capacity Che					Capacit				,	
	Actual	(Capacity	LOS F?			Actual	Cap	acity	LOS F?
					V _F		1959	Exhibit 25-14	4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	1511	Exhibit 25-14	4800	No
					V_R		448	Exhibit 25-3	2000	No
Flow Entering	g Merge In	fluence A	Area	<u> </u>	Flow E	nterin	g Diver	ge Influenc	ce Area	
	Actual		Desirable	Violation?			Actual	Max Desirabl	е	Violation?
V _{R12}		Exhibit 25-7			V ₁₂		1959	Exhibit 25-14	4400:All	No
Level of Serv								termination	•	=)
$D_R = 5.475 + 0.$		0.0078 V ₁₂	- 0.00627 L _A					0086 V ₁₂ - 0.0	009 L _D	
D _R = (pc/mi/ln	-				I	6.6 (pc	•			
LOS = (Exhibit							oit 25-4)			
Speed Deterr	mination				Speed					
$M_S = (Exibit 2)$	5-19)				ľ	•	xhibit 25-	-		
S _R = mph (Exh	nibit 25-19)				l ''		(Exhibit 2	•		
	nibit 25-19)				l *		(Exhibit 2	•		
S = mph (Exh	nibit 25-14)				S = 5	6.9 mph	(Exhibit 2	25-15)		

		RAMP	S AND RAM	P JUNCT	ONS WO	RKS	HEET			
General Info	rmation			Site Infor						
Analyst	SKB		Fr	eeway/Dir of T		I-40 W	В			
Agency or Company		T/TranSystems		ınction		Exit 42				
Date Performed		8/2011		ırisdiction		Fayette	County			
Analysis Time Perio	d AM F	Peak Period	Ar	nalysis Year		2014	,			
Project Description	Existing Condi	tions								
Inputs										
Upstream Adj Ramp)	Terrain: Leve	I						Downstrea Ramp	am Adj
▼ Yes	n									☐ On
□ No □ O	ff								✓ No	Off
L _{up} = 2000	ft		70.0 mmh			25.0 555	.h		L _{down} =	ft
$V_u = 387 v$	reh/h	5	$_{FF} = 70.0 \text{ mph}$ Sketch (show lanes, L _A	$S_{FR} = L_{D_i} V_{R_i} V_{f_i}$	35.0 mp	n		V _D =	veh/h
Conversion	to pc/h Une	der Base		,,	D IX I					
(pc/h)	V	PHF	Terrain	%Truck	%Rv	\Box	f [f	v = V/PHF	y f y f
	(Veh/hr)				 	+	f _{HV}	f _p		· ·
Freeway	1441	0.90	Level Level	25	0		889	1.00	+	01
Ramp	374	0.90	3	0	0.	985	1.00		22	
UpStream	387	0.90	Level	3	0	0.	985	1.00	4	36
DownStream										
Fatimatian a		Merge Areas			Fatime	4:		verge Areas	<u> </u>	
Estimation o	17 V ₁₂				Estima	tion c	οτ ν ₁₂			
	$V_{12} = V_{F}$	(P _{FM})					$V_{12} = $	$V_R + (V_F -$	$V_R)P_{FD}$	
L _{EQ} =	(Equ	ation 25-2 or	25-3)		L _{EQ} =		(E	quation 25	5-8 or 25-9)	
P _{FM} =	using	Equation (E	Exhibit 25-5)		P _{FD} =		1.00	00 using l	Equation (Ext	nibit 25-12)
V ₁₂ =	pc/h		,		V ₁₂ =			1 pc/h	1 ,	,
V ₃ or V _{av34}	•	(Equation 25	(1 or 25 5)		V ₃ or V _{av34}			-	tion 25-15 o	. 25 16)
)-4 01 23-3)			. 27				25-16)
Is V_3 or $V_{av34} > 2.7$					_ ~ ~		'00 pc/h? ☐			
Is V_3 or $V_{av34} > 1.5$	· -						5 * V ₁₂ /2			
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a}	=	рс	/h (Equation	on 25-18)	
Capacity Che	ecks				Capaci	ty Ch	ecks			
	Actual	С	apacity	LOS F?			Actual	(Capacity	LOS F?
					V _F		1801	Exhibit 25	5-14 4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V$	- V _D	1379	Exhibit 25	5-14 4800	No
10					V _R		422	Exhibit 2		No
Flance Frage		- Cl		<u> </u>						INU
Flow Enterin		4		Violetian	FIOW E		-	Max Desi	ence Area	Violetian
\/	Actual	1	Desirable	Violation?	\/	_	Actual		1	Violation?
V _{R12}	<u> </u>	Exhibit 25-7			V ₁₂			Exhibit 25-14		No
Level of Serv		Level o				on (if not	F)			
$D_R = 5.475 + 0$.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$	1.252 + 0.0	0086 V ₁₂ -	0.009 L _D	
D _R = (pc/mi/lr	ገ)				$D_R = 1$	5.2 (pc	/mi/ln)			
LOS = (Exhibit	25-4)				LOS = E	(Exhil	oit 25-4)			
Speed Deter	mination				- }		minatio	<u> </u>		
$M_S = $ (Exibit 2					 		xhibit 25-1			
_	hibit 25-19)				ľ	-	(Exhibit 2	-		
	•				1 ''		(Exhibit 2	•		
	hibit 25-19)				1 *		•	-		
S = mph (Exhibit 25-14) S = 57.0 mph (Exhibit 25-15)										

	RAMP	S AND RAM	P JUNCTI	ONS WO	RKSH	IEET			
General Information			Site Infor			 -			
Date Performed 04/18	T/TranSystems 3/2011 Peak Period	Jui Jui	eeway/Dir of Tr nction risdiction nalysis Year		I-40 WB Exit 42 Fayette 2014	County			
Project Description Existing Condit		7	larysis rour		2011				
Inputs									
Upstream Adj Ramp	Terrain: Leve	l						Downstrea Ramp	m Adj
✓ Yes ✓ On								•	☐ On
No ☐ Off									☐ Off
$L_{up} = 2000 \text{ ft}$ $V_{u} = 620 \text{ veh/h}$	S	FF = 70.0 mph	show longs I	S _{FR} = 3	35.0 mph			- _{down} = V _D =	ft veh/h
Conversion to pc/h Und	dor Pasa (show lanes, L _A	L _D , V _R , V _f)					
V			0.7	215	T .	Т	, 1	1//5::=	, .
(pc/h) (Veh/hr)	PHF	Terrain	%Truck	%Rv	f	HV	f _p	/ = V/PHF :	x t _{HV} x t _p
Freeway 1691	0.90	Level	25	0	0.8	89	1.00	211	14
Ramp 220	0.90	Level	3	0	0.9	85	1.00	24	8
UpStream 620	0.90	Level	3	0	0.9	85	1.00	69	9
DownStream	Marma Araaa			<u> </u>		Di-	10×20 A×000		
Estimation of v ₁₂	Merge Areas			Estimat	tion of		verge Areas		
V ₁₂ = V _F	(P.,.)			1			/ _R + (V _F - V _R)P-5	
	ation 25-2 or	25-3)		 =			quation 25-8		
Lu	Equation (E	•		L _{EQ} = P =		•	00 using Equ	•	hit 25 12)
1111	Equation (L	Milbit 25-5)		P _{FD} = V ₁₂ =			4 pc/h	Jation (Exili	DII 23-12)
12	(Equation 25	1 or 25 5)		V ₁₂ - V ₃ or V _{av34}			•	n 05 15 or	OF 46\
	(Equation 25	1-4 01 25-5)			> 2.70		oc/h (Equatio	11 25-15 01	25-16)
Is V_3 or $V_{av34} > 2,700$ pc/h? \bigvee Yes							Yes ✓ No		
Is V_3 or $V_{av34} > 1.5 * V_{12}/2$ Yes		. 0)					Yes ✓ No	05.40\	
If Yes, $V_{12a} = pc/h$ ((Equation 25	9-8)					/h (Equation	25-18)	
Capacity Checks	1 -		1	Capacit	ty Che		1 -		1
Actual	C	apacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual		acity	LOS F?
l l				V _F		2114	Exhibit 25-14		No
V _{FO}	Exhibit 25-7			$V_{FO} = V_{F}$		1866	Exhibit 25-14	4800	No
				V _R		248	Exhibit 25-3	2000	No
Flow Entering Merge In	4			Flow Er	`		ge Influenc		
Actual	1 1	Desirable	Violation?		_	ctual	Max Desirabl		Violation?
V _{R12}	Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No
Level of Service Detern				* 			ermination	•	-)
$D_R = 5.475 + 0.00734 \text{ V}_R + 0.00734 \text{ V}_R$	0.0078 V ₁₂ -	0.00627 L _A		1			086 V ₁₂ - 0.0)09 L _D	
$D_R = (pc/mi/ln)$				I	7.9 (pc/r	-			
LOS = (Exhibit 25-4)					(Exhib				
Speed Determination				Speed I	Deterr	ninatio	າ		
M _S = (Exibit 25-19)				$D_s = 0$.450 (Ex	hibit 25-1	9)		
s (Exibit 20 10)				1 '					
S_R = mph (Exhibit 25-19)				1	7.4 mph	(Exhibit 2	5-19)		
				$S_R = 5$		(Exhibit 2 Exhibit 2	•		

		RAMP	S AND RAM	IP JUNCT	ONS WO	RKSI	HEET			
General Info	rmation		***	Site Info			<u> </u>			
Analyst Agency or Compan Date Performed Analysis Time Perio	SKB y TDO 04/18	T/TranSystems 8/2011 Peak Period	s Ji Ji	reeway/Dir of T unction urisdiction nalysis Year	ravel	I-40 EB Exit 42 Fayette 2034	County			
Project Description				inalysis i cai		2034				
<i>Inputs</i>	Existing Condi	tions								
Upstream Adj Ram	p	Terrain: Leve	el						Downstrea Ramp	m Adj
✓ Yes ✓ C)n								Yes	□ On
□ No □ C	Off								✓ No	Off
L _{up} = 2000	ft		$S_{FF} = 70.0 \text{ mph}$		S _{FR} = 3	25 0 mnl			L _{down} =	ft
ŭ	veh/h		Sketch (show lanes, L _A		55.0 IIIpi	ı		V _D =	veh/h
Conversion	to pc/h Un	der Base	Conditions	9						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv	1	HV	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2321	0.90	Level	25	0		389	1.00	290	
Ramp	754	0.90	Level	10	0		952	1.00	88	
UpStream	275	0.90	Level	10	0	0.9	952	1.00	32	1
DownStream		Merge Areas			1		I Di	verge Areas		
Estimation of		o.go / oue			Estimat	ion o		70. go 7 ouc		
	V ₁₂ = V _F	(P)						V _R + (V _F - V _F	\D	
l =		ation 25-2 o	r 25-3)		 =			v _R + (v _F = v _F quation 25-8		
L _{EQ} = P -	· · ·	Equation (•		L _{EQ} =		•	ousing Eq	-	hit 25 12)
P _{FM} = V ₁₂ =	pc/h	Lquation (EXHIBIT 25-5)		P _{FD} = V ₁₂ =			1 pc/h	uation (LAII	IDIT 23-12)
V ₃ or V _{av34}	•	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34}			oc/h (Equatio	on 25-15 or	25-16)
Is V ₃ or V _{av34} > 2,7			3 4 01 20 0)			>270	-	Yes ⊠ No	JII 23-13 01	20-10)
Is V_3 or $V_{av34} > 2,7$								Yes ✓ No		
If Yes, V _{12a} =	·=		5-8)					/h (Equation	25-18)	
Capacity Ch		(Equation 2)	3 0)		Capacit			/II (Equation	20 10)	
Capacity Cit	Actual		Capacity	LOS F?	Joapach	y One	Actual	Ca	pacity	LOS F?
	Notadi	†	Jupacky	1 2001.	V _F	\neg	2901	Exhibit 25-1		No
V _{FO}		Exhibit 25-7		1	$V_{FO} = V_{F}$	- V_	2021	Exhibit 25-1	+	No
- FO		LAINDIC 20-7			V _{FO} V _R	· R	880	Exhibit 25-3		No
Class Cretoris	Nove le	fluonos	1			40 "!"				INO
Flow Enterin	Actual	7	Desirable	Violation?	FIOW EI	_	g <i>Diver</i> g	ge Influen Max Desirab		Violation?
V _{R12}	Actual	Exhibit 25-7	Desirable	Violation:	V ₁₂			Exhibit 25-14	4400:All	No
Level of Ser	vice Deterr		if not F)					erminatio		
$D_{R} = 5.475 + 0$								086 V ₁₂ - 0.	•	/
$D_R = 0.475 + 0$ $D_R = (pc/mi/l)$	• • •	0.0070 V ₁₂	3.00027 LA		L	4.7 (pc/		12 0.	<u>-</u> D	
LOS = (Exhibit	•				I		-			
Speed Deter	-				+		it 25-4)	<u> </u>		
					Speed L $D_s = 0$.		<i>ninatioi</i> khibit 25-1			
M _S = (Exibit 2	•				1	-	(Exhibit 2	•		
"	thibit 25-19)				1	•	(Exhibit 2	•		
' '	thibit 25-19) thibit 25-14)				1 *		-	-		
b = IIIhii (Ex	111DIL 20-14)				D = 55	מקווו ס.כ	(Exhibit 2	o-10)		

Generated: 4/20/2011 10:41 AM

		RAMP	S AND RAM	P JUNCTI	ONS WC	RKS	HEET			
General Info	rmation			Site Infor			-			
Analyst Agency or Compan Date Performed Analysis Time Peric	04/18	T/TranSystem: 3/2011 Peak Period	s Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year	avel	I-40 EE Exit 42 Fayette 2034				
Project Description			711	larysis rour		2001				
Inputs	· ·									
Upstream Adj Ramı	0	Terrain: Leve	el						Downstreai Ramp	m Adj
✓ Yes ✓ O									•	☐ On
□No □O										Off
$L_{up} = 2000$ $V_{u} = 410$ V			S _{FF} = 70.0 mph	show lanes, L _A ,	S _{FR} = 1	35.0 mp	h		$L_{down} = V_D = V_D$	ft veh/h
Conversion	to pc/h Und	der Base		- A	-D/ · R/ · f/					
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p
Freeway	2358	0.90	Level	25	0	0.	889	1.00	294	8
Ramp	449	0.90	Level	3	0	0.	985	1.00	50	6
UpStream	410	0.90	Level	3	0	0.	985	1.00	46	2
DownStream		Μ Δ						A		
Estimation o		Merge Areas			Estimat	tion c		iverge Areas		
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _R)P _{ED}	
L _{EQ} =	12 1	ation 25-2 o	r 25-3)		L _{EQ} =			Equation 25-8		
P _{FM} =		Equation (•		P _{FD} =		•	000 using Eq		bit 25-12)
V ₁₂ =	pc/h		,		V ₁₂ =			48 pc/h	(,
V ₃ or V _{av34}	•	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equatio	n 25-15 or	25-16)
Is V ₃ or V _{av34} > 2,7			,					Yes ☑ No		,
Is V_3 or $V_{av34} > 1.5$								Yes ✓ No		
If Yes, V _{12a} =	· -		5-8)				· -	c/h (Equation	25-18)	
Capacity Ch		(,		Capacit					
	Actual		Capacity	LOS F?	Joupaon	. , 	Actual	Car	oacity	LOS F?
			1		V _F		2948	Exhibit 25-14	1	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$		2442	Exhibit 25-14	4800	No
FO					V _R		506	Exhibit 25-3		No
Flow Enterin	na Morao In	fluonco	l roa					ge Influen		110
. IOW LINEIII	Actual	1	Desirable	Violation?	I IOW EI		Actual	Max Desirab		Violation?
V _{R12}	, totaui	Exhibit 25-7	_ 000010	1.514110111	V ₁₂	_	2948	Exhibit 25-14	4400:All	No
Level of Serv	vice Detern		if not F)					termination		
$D_R = 5.475 + 0$					† 			.0086 V ₁₂ - 0.0		/
D _R = (pc/mi/li	• • • • • • • • • • • • • • • • • • • •	12	А		L	-к 5.1 (рс		12	- ט	
LOS = (Exhibit	-				1		bit 25-4)			
Speed Deter					Speed I			nn		
$M_S = $ (Exibit 2					' ' 		xhibit 25-			
	hibit 25-19)				1	6.7 mph	(Exhibit	25-19)		
l '`	hibit 25-19)						(Exhibit 2	•		
	hibit 25-14)				1	6.7 mph	(Exhibit	25-15)		

		RAMP	S AND RAM	P JUNCT	ONS WO	ORKS	HEET			
General Info	rmation			Site Infor						
Analyst	SKB		Fr	eeway/Dir of T		I-40 WI	В			
Agency or Compan	ny TDO	T/TranSystems	s Ju	inction		Exit 42				
Date Performed	04/18	3/2011	Ju	ırisdiction		Fayette	County			
Analysis Time Perio	od AM P	Peak Period	Ar	nalysis Year		2034	-			
Project Description	Existing Condi	tions								
Inputs										
Upstream Adj Ram		Terrain: Leve)						Downstrear Ramp	n Adj
✓ Yes ✓ C	On								-	☐ On
□ No □ C	Off								✓ No	Off
L _{up} = 2000	ft								L _{down} =	ft
$V_u = 434$	veh/h	S	S _{FF} = 70.0 mph Sketch (s	show lanes, L _A	S _{FR} =	35.0 mp	bh		V _D =	veh/h
Conversion	to pc/h Uni	der Base		. А	D R I					
	V			0/ =	0/5	\neg	,	,	., \//D!!E	, 4 4
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	\perp	f _{HV}	f _p	v = V/PHF >	κτ _{ΗV} x t _p
Freeway	2197	0.90	Level	25	0	0.	889	1.00	274	6
Ramp	401	0.90	Level	3	0	0.	985	1.00	452	
UpStream	434	0.90	Level	3	0	0.	985	1.00	489)
DownStream		Marga Araaa		<u> </u>	1		D:	.o A		
Estimation of		Merge Areas			Estima	tion c		verge Areas		
LStillation					LSuma	uon c	12			
	$V_{12} = V_{F}$.=	/ _R + (V _F - V _F		
L _{EQ} =	(Equa	ation 25-2 o	r 25-3)		L _{EQ} =		(E	quation 25-8	or 25-9)	
P _{FM} =	using	Equation (Exhibit 25-5)		P _{FD} =		1.00	00 using Eq	uation (Exhil	oit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		274	6 pc/h		
V ₃ or V _{av34}	pc/h	(Equation 25	5-4 or 25-5)		V ₃ or V _{av34}		0 p	c/h (Equatio	on 25-15 or	25-16)
Is V_3 or $V_{av34} > 2.7$			•				-	Yes ☑ No		,
Is V ₃ or V _{av34} > 1.5								Yes ☑ No		
	· -		= o\						25 10)	
If Yes, V _{12a} =		(Equation 2	D-0)					h (Equation	20-10)	
Capacity Ch	1	1 6		I 100 F0	Capaci	ty Cn		1 0		1 . 00 50
	Actual		Capacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Actual	_	pacity	LOS F?
.,					V _F		2746	Exhibit 25-1		No
V _{FO}		Exhibit 25-7			$V_{FO} = V_{I}$		2294	Exhibit 25-1	+	No
					V _R		452	Exhibit 25-3	2000	No
Flow Enterin	ng Merge In	fluence A	\rea		Flow E	nterin	ng Diverg	je Influen	ce Area	
	Actual	Max	Desirable	Violation?			Actual	Max Desirab	ole	Violation?
V _{R12}		Exhibit 25-7		<u></u>	V ₁₂	:	2746 I	Exhibit 25-14	4400:All	No
Level of Ser	vice Detern	nination (if not F)		Level o	f Ser	vice Dete	erminatio	n (if not F)
$D_R = 5.475 + 0$	0.00734 v _R +	0.0078 V ₁₂ ·	· 0.00627 L _A			$D_R = 4$	1.252 + 0.0	086 V ₁₂ - 0.	009 L _D	
D _R = (pc/mi/l	ln)				$D_R = 2$	3.4 (pc	/mi/ln)	-		
LOS = (Exhibit	•						bit 25-4)			
Speed Deter	•					-	mination	,		
					† <i>*</i>		xhibit 25-1			
	•				1	•	(Exhibit 2	-		
_ ``	(hibit 25-19)				1		-	•		
' '	(hibit 25-19)				1 -		(Exhibit 25	-		
S = mph (Ex	(hibit 25-14)				S = 5	o.y mpr	(Exhibit 2	5-15)		

		RAMP	S AND RAM	P JUNCTI	ONS WC	RKS	HEET			
General Info	rmation			Site Infor						
Analyst Agency or Compang Date Performed Analysis Time Perio	04/18	T/TranSystem 8/2011 Peak Period	s Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year	avel	I-40 WI Exit 42 Fayette 2034	3 : County			
Project Description	Existing Condit	tions								
Inputs		-								
Upstream Adj Ramp)	Terrain: Leve	el						Downstrea Ramp	m Adj
✓ Yes ✓ O	n								•	☐ On
□ No □ O	ff								✓ No	Off
L _{up} = 2000	ft		S _{FF} = 70.0 mph		S _{FR} =	35 () mn	h	L	-down =	ft
$V_u = 650 \text{ V}$	/eh/h		• •	show lanes, L _A ,		55.0 mp		\	√ _D =	veh/h
Conversion	to pc/h Und	der Base	Conditions					,		
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	/ = V/PHF	x f _{HV} x f _p
Freeway	2478	0.90	Level	25	0	0.	889	1.00	309	98
Ramp	257	0.90	Level	3	0	0.	985	1.00	29	0
UpStream	650	0.90	Level	3	0	0.	985	1.00	73	3
DownStream		Marga Araga						hiorna Arasa		
Estimation o		Merge Areas			Estima	tion c		iverge Areas		
	V ₁₂ = V _F	(P _{EM})						V _R + (V _F - V _R)P _{ED}	
L _{EQ} =	12	、	r 25-3)		L _{EQ} =			quation 25-8		
P _{FM} =		Equation (-		P _{FD} =		•	00 using Equ	-	bit 25-12)
V ₁₂ =	pc/h	,	,		V ₁₂ =			98 pc/h	,	,
V ₃ or V _{av34}	-	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equatio	n 25-15 or	25-16)
Is V ₃ or V _{av34} > 2,7			•					Yes ☑ No		,
Is V_3 or $V_{av34} > 1.5$								Yes No		
If Yes,V _{12a} =	· =		5-8)					c/h (Equation	25-18)	
Capacity Ch					Capacia					
	Actual	(Capacity	LOS F?			Actual	Cap	acity	LOS F?
					V _F		3098	Exhibit 25-14	4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	V _R	2808	Exhibit 25-14	4800	No
					V_R		290	Exhibit 25-3	2000	No
Flow Enterin	g Merge In	fluence A	Area		Flow E	nterin	g Diver	ge Influenc	ce Area	
	Actual		Desirable	Violation?			Actual	Max Desirabl	е	Violation?
V _{R12}		Exhibit 25-7			V ₁₂		8098	Exhibit 25-14	4400:All	No
Level of Serv		`			† 			ermination	•	-
$D_R = 5.475 + 0$	• •	0.0078 V ₁₂	- 0.00627 L _A		1			0086 V ₁₂ - 0.0	009 L _D	
D _R = (pc/mi/lı	•					6.4 (pc	· ·			
LOS = (Exhibit	<u>-</u>						oit 25-4)			
Speed Deter	mination				Speed					
$M_S = (Exibit 2)$	25-19)				ľ	-	xhibit 25-	•		
S _R = mph (Ex	hibit 25-19)				I ''		(Exhibit 2	•		
	hibit 25-19)				ľ	•	(Exhibit 2	•		
S = mph (Ex	hibit 25-14)				S = 5	7.3 mph	(Exhibit 2	25-15)		

		RAMP	S AND RAM	IP JUNCTI	ONS WO	RKS	HEET				
General Infor	mation			Site Infor							
Analyst Agency or Company Date Performed Analysis Time Perioo Project Description	SKB TDO 04/18 d AM F	T/TranSystems 3/2011 Peak Period	S Ji Ji	reeway/Dir of Tr unction urisdiction nalysis Year	ravel	I-40 EB Exit 47 Haywo 2014	od County				
Inputs	Existing Condi	lions									
Upstream Adj Ramp		Terrain: Leve	el						Downstrea Ramp	m Adj	
✓ Yes ✓ Or									Yes	□ On	
No Of L _{iin} = 2000									No L _{down} =	Off ft	
$L_{up} = 2000$ $V_{u} = 29 \text{ ve}$		S	S _{FF} = 70.0 mph Sketch (show lanes, L _A	S _{FR} = 3	35.0 mp	h		V _D =	veh/h	
Conversion to	o pc/h Und	der Base		,	ין - אי יע						
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF	x f _{HV} x f _p	
Freeway	1712	0.90	Level	25	0	0.	889	1.00	214	10	
Ramp	102	0.90	Level	2	0	0.	990	1.00	11	4	
UpStream	29	0.90	Level	2	0	0.	990	1.00	33	3	
DownStream	<u> </u>	Marga Araaa			 			Niverma Areas			
Estimation of		Merge Areas			Estimat	ion o		Diverge Areas			
		(D)			Lotimat			\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\D		
	$V_{12} = V_F$. 05. 0)		l.			: V _R + (V _F - V _F			
L _{EQ} =		ation 25-2 or	•		L _{EQ} =		•	Equation 25-8	•	LU 05 40\	
P _{FM} =		Equation (I	=XNIDIT 25-5)		P _{FD} =			000 using Eq	luation (Exh	Dit 25-12)	
V ₁₂ =	pc/h	<i>(</i> = o			V ₁₂ =			140 pc/h			
V ₃ or V _{av34} Is V ₃ or V _{av34} > 2,70		(Equation 25 s No	o-4 or 25-5)		V_3 or V_{av34} Is V_3 or V_{av}	, ₃₄ > 2,7		pc/h (Equation Yes ✓ No	on 25-15 or	25-16)	
Is V ₃ or V _{av34} > 1.5					Is V ₃ or V _{av}	, ₃₄ > 1.5	* V ₁₂ /2	Yes ✓ No			
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes, V _{12a} =	=	p	c/h (Equation	25-18)		
Capacity Che					Capacit						
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?	
					V _F		2140	Exhibit 25-1	4 4800	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2026	Exhibit 25-1	4 4800	No	
					V _R		114	Exhibit 25-3	2000	No	
Flow Entering	a Merae In	fluence A	\rea			nterin	a Dive	rge Influen	ce Area		
	Actual		Desirable	Violation?			Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 25-7			V ₁₂	2	2140	Exhibit 25-14	4400:All	No	
Level of Serv	rice Detern	nination (if not F)			f Ser	vice De	terminatio	n (if not l	-	
$D_R = 5.475 + 0.$	00734 v _R +	0.0078 V ₁₂ -	· 0.00627 L _A			$D_R = 4$	1.252 + 0	.0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/ln)				$D_R = 18$	8.2 (pc	/mi/ln)				
LOS = (Exhibit :	25-4)				LOS = B	(Exhil	oit 25-4)				
Speed Deterr	nination				Speed L	Deter	minatio	on			
M _S = (Exibit 2	 5-19)				$D_s = 0$.438 (E	xhibit 25	-19)			
						S _R = 57.7 mph (Exhibit 25-19)					
						S_0 = N/A mph (Exhibit 25-19)					
S = mph (Exh	nibit 25-14)				1		(Exhibit				
							•	•			

Generated: 4/20/2011 10:43 AM

		RAMP	S AND RAM	P JUNCTI	ONS WO	ORKS	HEET				
General Infor	mation			Site Infor							
Analyst	SKB		Fre	eeway/Dir of Ti		I-40 EE					
Agency or Company	TDO ⁻	T/TranSystems	Ju	nction		Exit 47					
Date Performed	04/18	3/2011	Jui	risdiction		Haywo	od County				
Analysis Time Period	d PM F	Peak Period	An	alysis Year		2014					
Project Description	Existing Condi	tions									
Inputs		,									
Upstream Adj Ramp		Terrain: Leve	·l						Downstrean Ramp	n Adj	
Yes Or									Yes	☐ On	
□ No □ Of	f								✓ No	Off	
L _{up} = 2000	ft								L _{down} =	ft	
$V_u = 39 \text{ ve}$	h/h	S	$_{FF} = 70.0 \text{ mph}$ Sketch (s	show lanes, L _A	$S_{FR} = L_{D_t} V_{D_t} V_t$	35.0 mp	h	,	V _D =	veh/h	
Conversion t	o pc/h Und	der Base		A	DKF			ļ			
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF x	f _{in} , x f	
	(Veh/hr)				 						
Freeway	1765	0.90	Level	25	0		889	1.00	2200		
Ramp UpStream	169	0.90	Level	2	0		990	1.00	190)	
DownStream	39	0.90	Level	2	1 0	0.	990	1.00	44		
Downstream	<u>I</u>	<u>I I</u> Merge Areas		<u> </u>	1		Div	verge Areas			
Estimation of		<u> </u>			Estima	tion c		<u> </u>			
	V ₁₂ = V _F	(P ₋ ,,)			1		12	/ _R + (V _F - V _F	.)P-5		
l =		र म्लार ation 25-2 oा	25-3)		=			quation 25-8			
L _{EQ} = P =		Equation (-		L _{EQ} = P =		· ·	using Eq	-	nit 25 12)	
P _{FM} =	_	Lquation (i	_ATTION 2J-J)		P _{FD} =				uation (Exilic	JII 23-12)	
V ₁₂ =	pc/h				V ₁₂ =			6 pc/h			
V_3 or V_{av34}		(Equation 25	5-4 or 25-5)		V_3 or V_{av34}		-	c/h (Equatio	n 25-15 or 2	25-16)	
Is V_3 or $V_{av34} > 2,70$	00 pc/h? 🥅 Ye:	s 🗏 No			Is V ₃ or V _a	v34 > 2,7	00 pc/h? 🥅	Yes 🗹 No			
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗆 No			Is V ₃ or V _a	_{v34} > 1.5	* V ₁₂ /2	Yes 🗹 No			
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes, V _{12a}	=	pc/	h (Equation	25-18)		
Capacity Che					Capaci						
	Actual	C	apacity	LOS F?			Actual	Ca	pacity	LOS F?	
					V _F		2206	Exhibit 25-14	4 4800	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V$	_F - V _R	2016	Exhibit 25-14	4 4800	No	
					V _R		190	Exhibit 25-3	2000	No	
Flow Entering	n Merge In	fluence A	roa	<u> </u>				e Influen		1.10	
. 10 W LINGINI	Actual	7	Desirable	Violation?	, ,OW <u>L</u>		Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 25-7		112.20.0111	V ₁₂	_		Exhibit 25-14	4400:All	No	
Level of Serv	ice Detern		if not F)	<u> </u>				erminatio			
$D_R = 5.475 + 0.$					1			086 V ₁₂ - 0.0		/	
$D_R = 0.170 \cdot 0.00$	• • •	12	A		D _R = 1	8.7 (pc		- 32 - 12	ט=		
LOS = (Exhibit)	•				I ''		oit 25-4)				
•	-				_						
Speed Deterr					 ' 		<i>minatior</i> xhibit 25-1				
$M_S = (Exibit 2)$	•				ľ	•		•			
						S_R = 57.5 mph (Exhibit 25-19) S_0 = N/A mph (Exhibit 25-19)					
	nibit 25-19)				1 *		•	-			
S = mph (Exh	nibit 25-14)				S = 5	7.5 mph	(Exhibit 2	5-15)			

		RAMP	S AND RAM	P JUNCTI	ONS WC	RKS	HEET				
General Info	rmation			Site Infor							
Analyst Agency or Compan Date Performed Analysis Time Peric	SKB y TDO 04/18 od AM F	T/TranSystem 8/2011 Peak Period	s Ju Ju	eeway/Dir of Tr nction risdiction nalysis Year	avel	I-40 W Exit 47 Haywo 2014					
Project Description	Existing Condi	tions									
Inputs		F									
Upstream Adj Ramı	p	Terrain: Leve	el						Downstrear Ramp	n Adj	
▼ Yes ▼ O	'n								•	□ On	
□ No □ O	ff								✓ No	Off	
L _{up} = 2000	ft								down =	ft	
V _u = 199 ν	/eh/h		$S_{FF} = 70.0 \text{ mph}$ Sketch (s	show lanes, L _A ,	$S_{FR} = L_{D'}V_{R'}V_{f}$	35.0 mp	bh	\	/ _D =	veh/h	
Conversion	to pc/h Und	der Base	Conditions								
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	/ = V/PHF :	k f _{HV} x f _p	
Freeway	1616	0.90	Level	25	0	0.	.889	1.00	202	0	
Ramp	39	0.90	Level	2	0	0.	.990	1.00	44		
UpStream	199	0.90	Level	2	0	0.	.990	1.00	223	3	
DownStream		 Merge Areas			1			iverge Areas			
Estimation of		ivierge Areas			Estima	tion c		iverge Areas			
	V ₁₂ = V _F	(P _{EM})					V ₁₂ =	V _R + (V _F - V _R)P _{ED}		
L _{EQ} =	12 1	tion 25-2 o	r 25-3)		L _{EQ} =			Equation 25-8			
P _{FM} =		Equation (-		P _{FD} =		-	000 using Equ	-	hit 25-12)	
V ₁₂ =	pc/h	1	,		V ₁₂ =			20 pc/h		,	
V ₃ or V _{av34}	•	(Equation 2	5-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equatio	n 25-15 or	25-16)	
Is V_3 or $V_{av34} > 2.7$,					Yes 🗹 No		_0 .0,	
Is V ₃ or V _{av34} > 1.5								Yes ✓ No			
If Yes, V _{12a} =	· -		5-8)					c/h (Equation	25-18)		
Capacity Ch		(Equation E	3 3,		Capacia			om (Equation			
Capacity On	Actual		Capacity	LOS F?	 	iy On	Actual	Can	acity	LOS F?	
					V _F		2020	Exhibit 25-14		No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{FO}$		1976	Exhibit 25-14	 	No	
FO		2,1111011 20 7			V _R		44	Exhibit 25-3	2000	No	
Elow Entorin	Na Maraa In	fluonos	1 400							INU	
Flow Enterin	Actual		Desirable	Violation?	jr-IOW EI	_	Actual	ge Influenc Max Desirabl		Violation?	
V _{R12}	/ totaai	Exhibit 25-7	Domable	v ioidiioii:	V ₁₂	_	2020	Exhibit 25-14	4400:All	No	
Level of Serv	vice Detern		(if not F)	<u></u>				termination			
$D_R = 5.475 + 0$		`			† 			0086 V ₁₂ - 0.0	•	,	
D _R = (pc/mi/li		12	А		L		/mi/ln)	12	ט -		
LOS = (Exhibit	•				1		bit 25-4)				
Speed Deter							minatio	n			
$M_S = $ (Exibit 2					' '		xhibit 25-				
						S _R = 57.9 mph (Exhibit 25-19)					
	• •					S ₀ = N/A mph (Exhibit 25-19)					
	hibit 25-14)				1	•	` ı (Exhibit :	•			
· ` `	•						•	•			

		RAMP	S AND RAM	IP JUNCT	IONS WO	RKSI	HEET				
General Info	rmation			Site Info							
Analyst Agency or Company Date Performed Analysis Time Perio	SKB y TDO 04/18	T/TranSystems 8/2011 Peak Period	s Ji Ji	reeway/Dir of T unction urisdiction nalysis Year	ravel	I-40 WE Exit 47 Haywoo 2014	B od County				
Project Description											
Inputs	<u> </u>										
Upstream Adj Ramp		Terrain: Leve	el						Downstrea Ramp	m Adj	
✓ Yes ✓ O									☐ Yes	☐ On	
□ No □ O	ff								✓ No	Off	
L _{up} = 2000	ft		$S_{FF} = 70.0 \text{mph}$		S _{FR} = 3	35 Ω mnl	n		L _{down} =	ft	
V _u = 104 ν			Sketch (show lanes, L _A	1 11	70.0 mpi	'		V _D =	veh/h	
Conversion	<u> </u>	der Base	Conditions	•							
(pc/h)	V (Veh/hr)	PHF	Terrain	%Truck	%Rv		f _{HV}	f _p	v = V/PHF		
Freeway	1807	0.90	Level	25	0		389	1.00	22!		
Ramp	41	0.90	Level	2	0		990	1.00	40		
UpStream	104	0.90	Level	2	0	0.9	990	1.00	11	7	
DownStream		 Merge Areas			1	ļ		verge Areas			
Estimation o		ivici ye Ai eas			Estimat	ion o		reige Aleas			
	V ₁₂ = V _F	(P)			+			V _R + (V _F - V _F	\D		
l –		ation 25-2 o	r 25 3)		-			quation 25-8			
L _{EQ} = D _	· · · · · ·	Equation (•		L _{EQ} =			oualion 25-0 0 using Eq	-	ihit 25 12)	
P _{FM} = V ₁₂ =	_	Lqualion (EXHIBIT 25-5)		P _{FD} =				juation (Exil	IDIL 23-12)	
	pc/h	(Equation 2)	5 4 or 25 5)		V ₁₂ =			9 pc/h	n 05 15 ar	05.40\	
V_3 or V_{av34}		(Equation 2	5-4 01 25-5)		V ₃ or V _{av34}	. 27	-	oc/h (Equatio)fi 25-15 Of	25-16)	
Is V_3 or $V_{av34} > 2.7$								Yes ✓ No			
Is V ₃ or V _{av34} > 1.5	·=		- o)					Yes ✓ No	05.40)		
If Yes,V _{12a} =		(Equation 2	o-8)					/h (Equation	25-18)		
Capacity Ch	1	1 .		1	Capacit	y Che		1 -		1	
	Actual		Capacity	LOS F?	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\rightarrow	Actual		pacity	LOS F?	
.,		[V _F	<u>,,</u>	2259	Exhibit 25-1		No	
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2213	Exhibit 25-1		No	
					V _R		46	Exhibit 25-3	3 2000	No	
Flow Enterin	g Merge In	fluence A	A <i>rea</i>		Flow En	terin	g Diverç	ge Influen	ce Area		
	Actual	-	Desirable	Violation?	1	_	Actual	Max Desirab		Violation?	
V _{R12}		Exhibit 25-7			V ₁₂			Exhibit 25-14	4400:All	No	
Level of Serv								erminatio	•	F)	
$D_R = 5.475 + 0$	0.00734 v _R +	0.0078 V ₁₂	- 0.00627 L _A			$D_R = 4$.252 + 0.0	0086 V ₁₂ - 0.	009 L _D		
D _R = (pc/mi/lı	n)				$D_R = 19$	9.2 (pc /	mi/ln)				
LOS = (Exhibit	25-4)				LOS = B	(Exhib	it 25-4)				
Speed Deter	mination				Speed L	Deteri	minatio	า			
M _S = (Exibit 2	<u></u>				$D_s = 0.$	432 (E)	xhibit 25-1	9)			
-						S _R = 57.9 mph (Exhibit 25-19)					
						/A mph	(Exhibit 25	5-19)			
' '	hibit 25-14)				1 *		(Exhibit 2	·-			
Γ 1	,						,	- /			

		RAMP	S AND RAM	P JUNCT	ONS WO	RKS	HEET			
General Info	rmation			Site Infor						
Analyst	SKB		Fr	eeway/Dir of T		I-40 EB				
Agency or Company		T/TranSystems		ınction		Exit 47				
Date Performed		3/2011		ırisdiction			od County			
Analysis Time Perio	d AM P	Peak Period	Ar	nalysis Year		2034	,			
Project Description	Existing Condit	tions		_						
Inputs										
Upstream Adj Ramp		Terrain: Leve	l						Downstrear Ramp	n Adj
Yes Or	n								☐ Yes	☐ On
□ No □ Of	ff								☑ No	Off
L _{up} = 2000	ft								L _{down} =	ft
$V_u = 43 \text{ ve}$	·h/h	S	$_{FF} = 70.0 \text{ mph}$ Sketch (show lanes, L _A	$S_{FR} = 3$, $L_{D_i}V_{D_i}V_i$	35.0 mp	h		V _D =	veh/h
Conversion t	o pc/h Und	der Base (. А	י טי אי וי					
	V V			0/ Truck	0/ Dv		<u>, [</u>	f	V = W/DUE :	v f v f
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	+-	f _{HV}	'	v = V/PHF	· ·
Freeway	2472	0.90	Level	25	0		889	1.00	309	
Ramp	124	0.90	Level	2	0	0.	990	1.00	13'	9
UpStream	43	0.90	Level	2	0	0.	990	1.00	48	1
DownStream					ļ					
Estimation o		Merge Areas			Fotimot	ion o		iverge Areas		
Estimation o					Estimat	ion o				
	$V_{12} = V_F$	(P _{FM})					$V_{12} =$	$V_R + (V_F - V_I)$	_R)P _{FD}	
L _{EQ} =	(Equa	ation 25-2 or	25-3)		L _{EQ} =		(1	Equation 25-8	3 or 25-9)	
P _{FM} =	using	Equation (E	Exhibit 25-5)		P _{FD} =		1.0	000 using Ed	quation (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		30	90 pc/h		
V ₃ or V _{av34}	pc/h	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}		0	pc/h (Equation	on 25-15 or	25-16)
Is V ₃ or V _{av34} > 2,70			,			> 2.7		Yes ✓ No		
Is V_3 or $V_{av34} > 1.5$								Yes ✓ No		
	·=		: 0\		, u.) 25 10\	
	pc/h	(Equation 25	i-o)		If Yes,V _{12a} =			c/h (Equation	120-10)	
Capacity Che	_	I 0	ana altri	LOS F?	Capacit	y Cri		l Co	un a aitu	LOCES
	Actual	i	apacity	LUSF?	\		Actual		pacity	LOS F?
					V _F		3090	Exhibit 25-1		No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2951	Exhibit 25-1		No
					V_R		139	Exhibit 25-3	3 2000	No
Flow Entering	g Merge In	fluence A	rea		Flow Er	nterin	g Dive	rge Influen	ce Area	
	Actual	1	Desirable	Violation?			Actual	Max Desiral		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	3	3090	Exhibit 25-14	4400:All	No
Level of Serv	rice Detern	nination (i	f not F)		Level o	f Serv	vice De	terminatio	n (if not l	=)
$D_R = 5.475 + 0$.00734 v _R +	0.0078 V ₁₂ -	0.00627 L _A			$D_R = 4$	1.252 + 0	.0086 V ₁₂ - 0.	.009 L _D	
D _R = (pc/mi/lr	1)				D _R = 20	6.3 (pc ,	/mi/ln)			
LOS = (Exhibit	25-4)				1		oit 25-4)			
Speed Deteri	mination				Speed L			on		
M _S = (Exibit 2					+		xhibit 25-			
1	nibit 25-19)					7.7 mph	(Exhibit	25-19)		
	nibit 25-19)				I ''		(Exhibit 2	•		
	nibit 25-19)				1		(Exhibit	•		
C - IIIIII (LXI	11011 20-14)				<u>h - 2</u>	i.i iiipli	(LYIIIDII	20-10)		

		RAMP	S AND RAM	P JUNCT	ONS WO	ORKS	HEET				
General Infor	mation			Site Infor							
Analyst	SKB		Fre	eeway/Dir of T		I-40 EE	}				
Agency or Company	TDO	T/TranSystems	. Ju	nction		Exit 47					
Date Performed	04/18	3/2011	Ju	risdiction		Haywo	od County				
Analysis Time Period	d PMP	eak Period	An	nalysis Year		2034					
Project Description	Existing Condit	tions									
Inputs											
Upstream Adj Ramp —		Terrain: Leve	<u> </u>						Downstream Ramp	n Adj	
✓ Yes ✓ Or									☐ Yes	On	
□ No □ Of										Off	
$L_{up} = 2000$	ft		70.0			05.0			L _{down} =	ft	
$V_u = 58 \text{ ve}$	h/h	5	$S_{FF} = 70.0 \text{ mph}$ Sketch (s	show lanes, L _A	$S_{FR} = L_{D_i} V_{P_i} V_{f_i}$	35.0 mp	n		V _D = ,	veh/h	
Conversion t	o pc/h Und	der Base			DICT						
(pc/h)	V	PHF	Terrain	%Truck	%Rv		f _{HV}	fp	v = V/PHF x	f _{u\/} x f ₌	
Freeway	(Veh/hr) 2571	0.90	Level	25	0		889	1.00	3214	<u>'</u>	
Ramp	197	0.90	Level	25	0		990	1.00	221	T	
UpStream	58	0.90	Level	2	0		990	1.00	65		
DownStream	30	0.90	Levei		0	0.	990	1.00	03		
Down ou dum	<u>. </u>	Merge Areas		<u>I</u>	1		Div	erge Areas			
Estimation or					Estima	tion c					
	V ₁₂ = V _F	(P)			1		12	/ _R + (V _F - V _I			
l =		ation 25-2 o	25-3)					quation 25-8			
L _{EQ} = D -		Equation (•		L _{EQ} =		· ·	-	· ·	# DE 10\	
P _{FM} =	_	Equation (EXHIBIT 20-0)		P _{FD} =				Juation (Exhib	11 25-12)	
V ₁₂ =	pc/h				V ₁₂ =			4 pc/h			
V ₃ or V _{av34}		(Equation 25	5-4 or 25-5)		V_3 or V_{av34}				on 25-15 or 2	25-16)	
Is V_3 or $V_{av34} > 2,70$					•			Yes 🗹 No			
Is V ₃ or V _{av34} > 1.5	* V ₁₂ /2	s 🗏 No			Is V ₃ or V _a	_{v34} > 1.5	* V ₁₂ /2	Yes 🗹 No			
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a}	=	pc/	h (Equation	25-18)		
Capacity Che					Capaci						
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F?	
					V _F		3214	Exhibit 25-1	4 4800	No	
V_{FO}		Exhibit 25-7			$V_{FO} = V$	- V _P	2993	Exhibit 25-1	4 4800	No	
					V _R		221	Exhibit 25-3		No	
Flow Entering	a Morgo In	fluoneo A	roa					e Influen		110	
I IOW EIILEIII	Actual	4	Desirable	Violation?	I IOW E		Actual	Max Desiral		Violation?	
V _{R12}	Actual	Exhibit 25-7	บ _ั ดวแนมเด	violation:	V ₁₂	_		Exhibit 25-14	4400:All	No	
Level of Serv	ice Detern		if not F)	<u> </u>					n (if not F		
$D_R = 5.475 + 0.$								086 V ₁₂ - 0.		/	
$D_R = 0.776 \cdot 0.00$	• •	-100.0 12			D_ = 2	27.4 (pc		- 12 0.	- D		
	•				1 "		•				
LOS = (Exhibit:	-						oit 25-4)				
Speed Deterr					 ' 		<i>minatior</i> xhibit 25-1				
$M_S = $ (Exibit 2)	-				ľ	•		•			
						S _R = 57.5 mph (Exhibit 25-19)					
· ·	nibit 25-19)				1 *		(Exhibit 25	•			
S = mph(Exh	nibit 25-14)				S = 5	7.5 mph	(Exhibit 2	5-15)			

		RAMP	S AND RAM	P JUNCT	ONS WO	RKS	HEET			
General Infor	mation			Site Infor			-			
Analyst	SKB		Fr	eeway/Dir of T		I-40 WE	3			
Agency or Company		T/TranSystems		inction		Exit 47				
Date Performed		3/2011		ırisdiction			od County			
Analysis Time Period	d AM F	Peak Period	Ar	nalysis Year		2034	,			
Project Description				,						
Inputs										
Upstream Adj Ramp		Terrain: Leve							Downstrear Ramp	n Adj
✓ Yes ✓ Or	า								-	□ On
□ No □ Of	f								✓ No	Off
L _{up} = 2000	ft				_				L _{down} =	ft
$V_u = 234 \text{ V}_u$	eh/h	S	FF = 70.0 mph Sketch (show lanes, L _A	$S_{FR} = 3$ $, L_{D_f} V_{D_f} V_f)$	35.0 mp	h		V _D =	veh/h
Conversion t	o pc/h Uni	der Base (· A	D. K. I.					
	V			0/ T	0/ D		, [\//DUE	
(pc/h)	(Veh/hr)	PHF	Terrain	%Truck	%Rv	+-	f _{HV}	<u>'</u>	v = V/PHF	'
Freeway	2364	0.90	Level	25	0	_	389	1.00	295	
Ramp	58	0.90	Level	2	0	0.9	990	1.00	65	
UpStream	234	0.90	Level	2	0	0.9	990	1.00	26	3
DownStream	<u> </u>	<u> </u>								
Estimation of		Merge Areas			Fatimat	iono		iverge Areas		
Estimation of					Estimat	1011 0				
	$V_{12} = V_F$	(P _{FM})					V ₁₂ =	$V_R + (V_F - V_F)$	_R)P _{FD}	
L _{EQ} =	(Equa	ation 25-2 or	25-3)		L _{EQ} =		(E	Equation 25-8	3 or 25-9)	
P _{FM} =	using	Equation (E	xhibit 25-5)		P _{FD} =		1.0	000 using Eq	<mark>juation</mark> (Exhi	bit 25-12)
V ₁₂ =	pc/h				V ₁₂ =		29	55 pc/h		
V ₃ or V _{av34}	•	(Equation 25	-4 or 25-5)		V ₃ or V _{av34}			pc/h (Equation	on 25-15 or	25-16)
Is V_3 or $V_{av34} > 2,70$						> 2.7		Yes ✓ No	J. 20 10 01	20 .0,
Is V_3 or $V_{av34} > 2,76$ Is V_3 or $V_{av34} > 1.5$								Yes Vo		
	· -		0)		J uv	01	12		05 40\	
	pc/h	(Equation 25	-8)		If Yes,V _{12a} =			c/h (Equation	25-18)	
Capacity Che	,			1	Capacit	y Che				
	Actual	C	apacity	LOS F?	 		Actual		pacity	LOS F?
					V _F		2955	Exhibit 25-1	4 4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{F}$	- V _R	2890	Exhibit 25-1	4 4800	No
					V _R		65	Exhibit 25-3	3 2000	No
Flow Entering	a Merae In	fluence A	rea			terin	a Diver	ge Influen	ce Area	
- 1011 - 1110 1111	Actual		Desirable	Violation?	1		Actual	Max Desirab		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	_	955	Exhibit 25-14	4400:All	No
Level of Serv	rice Detern		f not F)			f Serv	rice De	terminatio		=)
$D_R = 5.475 + 0.00$					-			0086 V ₁₂ - 0.	•	,
$D_R = (pc/mi/ln$	• •	12	А			-к 5.2 (рс /		12	U	
LOS = (Exhibit	•				1		oit 25-4)			
Speed Deterr					Speed L	•		n		
$M_S = $ (Exibit 2					+		xhibit 25-			
	•						(Exhibit 2	-		
	nibit 25-19)				I ''		•	-		
	nibit 25-19)				1 *		(Exhibit 2	•		
S = mph (Exh	nibit 25-14)				S = 57	7.9 mph	(Exhibit 2	25-15)		

		RAMP	S AND RAM	P JUNCT	ONS WO	ORKS	HEET			
General Info	rmation			Site Infor						
Analyst	SKB		Fre	eeway/Dir of T		I-40 WI	3			
Agency or Company	TDO	T/TranSystems	. Ju	nction		Exit 47				
Date Performed	04/18	3/2011	Jui	risdiction		Haywo	od County			
Analysis Time Perio	d PM P	eak Period	An	nalysis Year		2034				
Project Description	Existing Condit	tions								
Inputs								-		
Upstream Adj Ramp —		Terrain: Leve	<u> </u>						Downstrean Ramp	n Adj
✓ Yes ✓ Oi									Yes	On
□ No □ Ot										Off
$L_{up} = 2000$	ft		700			25.0			L _{down} =	ft
$V_u = 127 \text{ v}$	eh/h	S	$S_{FF} = 70.0 \text{ mph}$ Sketch (s	show lanes, L _A	$S_{FR} = L_{D_f} V_{D_f} V_f$	35.0 mp	'n		$V_D = $	veh/h
Conversion t	to pc/h Und	der Base			DKT					
(pc/h)	V	PHF	Terrain	%Truck	%Rv	\Box	f _{HV}	f _p	v = V/PHF x	f _{HV} x f _z
Freeway	(Veh/hr) 2608	0.90	Level	25	0		889	1.00	3260	<u>'</u>
Ramp	61	0.90	Level	23	0	_	990	1.00	68	<u>, </u>
UpStream	127	0.90	Level	2	0		990	1.00	143	
DownStream	127	0.70	Lovoi		, ,	╅~	770	1.00	110	'
		Merge Areas					Div	erge Areas		
Estimation o	f v ₁₂				Estima	tion c	of v ₁₂			
	V ₁₂ = V _F	(P _{EM})					V ₁₂ = \	_R + (V _F - V _F)P _{ED}	
L _{EQ} =		tion 25-2 oi	(25-3)		L _{EQ} =			quation 25-8		
P _{FM} =		Equation (•		P _{FD} =		•	-	uation (Exhib	nit 25-12)
	pc/h	_qualion (-Arnon 20 0)					pc/h	addon (Exilic	120 12)
V ₁₂ =	•	/F	. 4 05 5)		V ₁₂ =			-	05.45	25 40)
V_3 or V_{av34}		(Equation 25	o-4 or 25-5)		V ₃ or V _{av34}				on 25-15 or 2	25-16)
Is V_3 or $V_{av34} > 2,70$								Yes 🗹 No		
Is V_3 or $V_{av34} > 1.5$	* V ₁₂ /2	s 🗏 No						Yes 🔽 No		
If Yes,V _{12a} =	pc/h	(Equation 25	5-8)		If Yes,V _{12a}	=	pc/	h (Equation	25-18)	
Capacity Che	ecks				Capaci	ty Ch	ecks			
	Actual	С	apacity	LOS F?			Actual	Ca	pacity	LOS F?
					V _F		3260	Exhibit 25-14	4 4800	No
V_{FO}		Exhibit 25-7			$V_{FO} = V_{FO}$	V _R	3192	Exhibit 25-1	4800	No
					V _R		68	Exhibit 25-3	2000	No
Flow Enterin	a Merae In	fluence A	rea				a Diverd	e Influen	ce Area	
- 1011 - 11101111	Actual	4	Desirable	Violation?	1		Actual	Max Desirab		Violation?
V _{R12}		Exhibit 25-7			V ₁₂	_		Exhibit 25-14	4400:All	No
Level of Serv	rice Detern		if not F)	<u>l</u>					n (if not F	
$D_R = 5.475 + 0$					1			086 V ₁₂ - 0.		<i>,</i>
D _R = (pc/mi/lr	• • • • • • • • • • • • • • • • • • • •	- 12	A		$D_R = 2$	-к !7.8 (рс		12	U	
LOS = (Exhibit	•						oit 25-4)			
Speed Deteri	•				+		mination	,		
					 ' 		xhibit 25-1			
M _S = (Exibit 2	-						(Exhibit 25-1	•		
_ ``							•	-		
	nibit 25-19)				1 '	•	(Exhibit 25	-		
S = mph (Ext)	nibit 25-14)				S = 5	7.8 mph	(Exhibit 2	o-15)		

Two Lane Segments Highway Capacity Software Computer Printouts

General Information		Site Informati	tion	
Analyst	SKB	Highway	SR 59	
Agency or Company	TDOT/TranSystems	From/To	North of I-40	
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014	
Project Description: Existing Con		7 thatyolo 1 oat	2011	
nput Data				
			Class I highway Class I	Lhighway
 				
	\$\frac{1}{2} Shoulder width	tt	Terrain ✓ Level ☐ Ro	
-	Lane width	tt	Two-way hourly volume 404 Directional split 54/	veh/h 46
	Lane width	ft	Peak-hour factor, PHF 0.90	
	Shoulder width	= <u>#</u>	No-passing zone 100	
Segment	length, L _t mi	Show North A	250738	
Jeginene	rengar, 4m	A	% Recreational vehicles, P _R 0%	
			Access points/ mi 10)
Average Travel Speed		•		
Grade adjustment factor, f _G (Exhi	bit 20-7)		1.00	
Passenger-car equivalents for tru	cks, E _T (Exhibit 20-9)		1.7	
Passenger-car equivalents for RV	's, E _R (Exhibit 20-9)		1.0	
Heavy-vehicle adjustment factor,	$f_{HV} = 1/(1 + P_T(E_T-1) + P_R(E_R-1))$		0.979	
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})		458	
$v_{ m p}^{\;\;*}$ highest directional split propo	rtion ² (pc/h)		247	
Free-Flow S	peed from Field Measurement		Estimated Free-Flow Speed	
Field Measured are and C	mi	Base free-flow	v speed, BFFS _{FM}	45.0 mi/h
Field Measured speed, S _{FM}		Adj. for lane v	vidth and shoulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h
Observed volume, V _f	vel	n/n	ss points, f _A (Exhibit 20-6)	2.5 mi/h
Free-flow speed, FFS FFS=S _{FM} -	$+0.00776(V_{f}/f_{HV})$ mi	i/h I	eed, FFS (FSS=BFFS-f _{LS} -f _A)	41.2 mi/h
Adj. for no-passing zones, f _{np} (<i>m</i>	<i>i/h</i>) (Exhibit 20-11)	133 600	4.3	-
Average travel speed, ATS (mi/h		1	33.3	
Percent Time-Spent-Following	h lih	<u>I</u>		
Grade Adjustment factor, f _G (Exhi	ibit 20-8)		1.00	
		+		
Passenger-car equivalents for tru	1.		1.1	
Passenger-car equivalents for RV			1.0	
Heavy-vehicle adjustment factor,			0.997	
Two-way flow rate ¹ , v _p (pc/h)=V/			450	
/p * highest directional split propo			243	
Base percent time-spent-following	g, BPTSF(%)=100(1-e ^{-0.000879v} p)		32.7	
Adj. for directional distribution and	d no-passing zone, f _{d/hp} (%)(Exh. 20-1	2)	23.0	
Percent time-spent-following, PTS			55.6	
Level of Service and Other Perf Level of service, LOS (Exhibit 20-		T	С	
/olume to capacity ratio, v/c=V _p /	· · · · · · · · · · · · · · · · · · ·		0.14	
Peak 15-min veh-miles of travel, V			112	
Peak-hour vehicle-miles of travel,		<u> </u>	404	
Peak 15-min total travel time, TT ₁			3.4	
Notes		ı		

General Information		Site Information		
Analyst	SKB	Highway	SR 59	
Agency or Company	TDOT/TranSystems	From/To	South of I-40	
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014	
Project Description: Existing Con	nditions	, , ,		
nput Data				
			Class I highway Class II	highway
	1 Shoulder width	- 4	Terrain Level Ro	
				veh/h
			Directional split 61 / 3	
\$2 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3			Peak-hour factor, PHF 0.90 No-passing zone 100	
		Show North Arrow	% Trucks and Buses , P _T 3 %	
Segment	length, L _t mi	-50200 500000000000000000000000000000000	% Recreational vehicles, P _R 0%	
81			Access points/ mi 10)
Average Travel Speed		<u> </u>	toooo pointo, mi	,
Grade adjustment factor, f _G (Exhi	pit 20-7)		1.00	
Passenger-car equivalents for true			1.7	
Passenger-car equivalents for RV	·		1.0	
Heavy-vehicle adjustment factor,			0.979	
Two-way flow rate ¹ , v _p (pc/h)=V/			473	
v _p * highest directional split propo			289	
	peed from Field Measurement		Estimated Free-Flow Speed	
		Base free-flow speed, BFI	FS _{EM}	45.0 mi/h
Field Measured speed, S _{FM}	mi/h		oulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h
Observed volume, V _f	veh/h	Adj. for access points, f _A (20	2.5 mi/h
Free-flow speed, FFS FFS=S _{FM} +	$-0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FS		41.2 mi/h
Adj. for no-passing zones, f _{np} (<i>m</i>	i/h) (Exhibit 20-11)		4.3	
Average travel speed, ATS (mi/h	ATS=FFS-0.00776v _p -f _{np}		33.2	
Percent Time-Spent-Following				
Grade Adjustment factor, f _G (Exhi	bit 20-8)		1.00	
Passenger-car equivalents for true	cks, E _T (Exhibit 20-10)		1.1	
Passenger-car equivalents for RV	s, E _R (Exhibit 20-10)		1.0	
Heavy-vehicle adjustment factor,	f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.997	
Two-way flow rate ¹ , v _p (pc/h)=V/	PHF * f _G * f _{HV})		465	
_p * highest directional split propo	rtion ² (pc/h)		284	
Base percent time-spent-following	, BPTSF(%)=100(1-e ^{-0.000879v} p)		33.6	
Adj. for directional distribution and	no-passing zone, f _{d/hp} (%)(Exh. 20-12)		21.8	
Percent time-spent-following, PTS	SF(%)=BPTSF+f _{d/np}		55.3	
evel of Service and Other Perf				
evel of service, LOS (Exhibit 20-			C	
/olume to capacity ratio, v/c=V _p /			0.15	
Peak 15-min veh-miles of travel, \			116	
Peak-hour vehicle-miles of travel,			417	
Peak 15-min total travel time, TT ₁	₅ (veh-h)= VMT ₁₅ /ATS		3.5	
Votes				

Generated: 4/20/2011 10:54 AM

General Information	TWO-WAY TWO-LANE I	Site Information	
Analyst	SKB	Highway	SR 59
Agency or Company	TDOT/TranSystems	From/To	North of I-40
Date Performed Analysis Time Period	04/18/2011 PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014
Project Description: Existing Con-	ditions		
Input Data			
		Class	I highway Class II highway
	1 Shoulder width		Level Rolling
<u> </u>			ourly volume 384 veh/h
		Directional	
STATE OF THE STATE		Peak-hour find No-passing	•
<u>.</u>		Show North Arrow % Trucks a	and Buses , P _T 3 %
Segment I	ength, L _t mi	% Recreation	onal vehicles, P _R 0%
		Access poir	
Average Travel Speed		<u>'</u>	
Grade adjustment factor, f _G (Exhib	it 20-7)		1.00
Passenger-car equivalents for truc			1.7
Passenger-car equivalents for RVs			1.0
Heavy-vehicle adjustment factor, f			0.979
Two-way flow rate ¹ , v _p (pc/h)=V/ (l			436
v _p * highest directional split propor	tion ² (pc/h)		244
Free-Flow Sp	eed from Field Measurement	Estimate	ed Free-Flow Speed
		Base free-flow speed, BFFS _{FM}	45.0 mi/h
Field Measured speed, S _{FM}	mi/h	Adj. for lane width and shoulder widt	h ³ , f _{I,S} (Exhibit 20-5) 1.3 mi/h
Observed volume, V _f	veh/h	Adj. for access points, f _A (Exhibit 20-	
Free-flow speed, FFS FFS=S _{FM} +0	$0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FSS=BFFS-f	
Adj. for no-passing zones, f _{np} (<i>mi/</i>	/h) (Exhibit 20-11)		4.4
Average travel speed, ATS (mi/h)	ATS=FFS-0.00776v _p -f _{np}		33.4
Percent Time-Spent-Following		-	
Grade Adjustment factor, f _G (Exhib	pit 20-8)		1.00
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-10)		1.1
Passenger-car equivalents for RVs	s, E _R (Exhibit 20-10)		1.0
Heavy-vehicle adjustment factor, f	$_{HV}$ =1/(1+ $P_{T}(E_{T}$ -1)+ $P_{R}(E_{R}$ -1))		0.997
Two-way flow rate ¹ , v _p (pc/h)=V/ (F	PHF * f _G * f _{HV})		428
/p * highest directional split propor			240
Base percent time-spent-following,			31.4
	no-passing zone, f _{d/hp} (%)(Exh. 20-12)		22.9
Percent time-spent-following, PTS	*		54.2
Level of Service and Other Performance Level of Service, LOS (Exhibit 20-3)			В
/olume to capacity ratio, v/c=V _p / 3			0.14
Peak 15-min veh-miles of travel, V			107
Peak-hour vehicle-miles of travel,			384
			3.2
Peak 15-min total travel time, TT ₁₅	-(ACII-III- AIMI * 5/V 12)		

Generated: 4/20/2011 10:55 AM

General Information		Site Information			
Analyst	SKB	Highway	SR 59		
Agency or Company	TDOT/TranSystems	From/To	South of I-40		
Date Performed Analysis Time Period	04/18/2011 PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Co		Analysis Teal	2014		
nput Data					
				LICAL	
L			Class I highway Class I		
	\$ Shoulder width	_ft _	Terrain Level Ro		
*	Lane width	_tt /	Two-way hourly volume 398 Directional split 55/	veh/h <i>45</i>	
	Lane width	tt	Peak-hour factor, PHF 0.96)	
	Shoulder_width	=- <u>#</u>	No-passing zone 100		
· Samuel	Local I	Show North Arrow	% Trucks and Buses , P _T 3 %		
Segmen	t length, L _t mi		% Recreational vehicles, P _R 0%	1	
			Access points/ mi 10	0	
Average Travel Speed		•			
Grade adjustment factor, f _G (Exh	ibit 20-7)		1.00		
Passenger-car equivalents for tru	icks, E _T (Exhibit 20-9)		1.7		
Passenger-car equivalents for R\	/s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor,	$f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$		0.979		
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})		452		
v _p * highest directional split propo	ortion ² (pc/h)		249		
Free-Flow S	peed from Field Measurement		Estimated Free-Flow Speed		
Field Measured speed, S _{FM}	mi/	Base free-flow spec	ed, BFFS _{FM}	45.0 mi/h	
	veh	Adj. for lane width a	and shoulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V _f		Adj. for access poir	nts, f _A (Exhibit 20-6)	2.5 mi/h	
Free-flow speed, FFS FFS=S _{FM}	$+0.00776(V_f/f_{HV})$ mi/	/h I	FS (FSS=BFFS-f _{LS} -f _A)	41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>n</i>	ni/h) (Exhibit 20-11)		4.3		
Average travel speed, ATS (mi/f	n) ATS=FFS-0.00776v _p -f _{np}		33.3		
Percent Time-Spent-Following		•			
Grade Adjustment factor, f _G (Exh	nibit 20-8)		1.00		
Passenger-car equivalents for tru			1.1		
Passenger-car equivalents for R\	1.5		1.0		
	f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.997		
Two-way flow rate ¹ , v _p (pc/h)=V/			444		
v _p * highest directional split propo			244		
•	g, BPTSF(%)=100(1-e ^{-0.000879v} p)		32.3		
	d no-passing zone, f _{d/hp} (%)(Exh. 20-12	2)	22.9		
Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np}			55.2		
Level of Service and Other Per	formance Measures	<u>'</u>	С		
_evel of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)			0.14		
Volume to capacity ratio, v/c=V _p /			111		
	VMT_(veh- mi)= 0.25L _t (V/PHF)	+	398		
Peak-hour vehicle-miles of travel		+	3.3		
Peak 15-min total travel time, TT	15(veii-ii)= vivii 15/A13		3.3		
Notes 1. If Vp >= 3,200 pc/h, terminate	analysis-the LOS is F				
1. 11 vp >= 3,200 pc/11, terminate	analysis-the LOS is F. - 1,700 pc/h, terminated anlysis-the LO				

General Information		Site Information			
Analyst	SKB	Highway	SR 59		
Agency or Company	TDOT/TranSystems	From/To	North of I-40		
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2034		
Project Description: Existing Co		Allalysis Teal	2034		
Input Data					
			Class I highway	-i-al	
<u>L</u>			• .		
	\$ Shoulder width	_ttTerra			
* * *	Lane width		way hourly volume 555 ve tional split 58 / 42		
	Lane width	_tt Peak	-hour factor, PHF 0.90	-	
	Shoulder width		assing zone 100		
Sogmen	t length, L	Show North Arrow % In	rucks and Buses , P _T 3 %		
Segmen	t length, L _t mi	% Re	ecreational vehicles, P _R 0%		
		Acce:	ss points/ mi 10		
Average Travel Speed		<u>, </u>			
Grade adjustment factor, f _G (Exh	nibit 20-7)		1.00		
Passenger-car equivalents for tr	ucks, E _T (Exhibit 20-9)		1.2		
Passenger-car equivalents for R	Vs, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor	$f_{HV} = 1/(1 + P_T(E_{T}-1) + P_R(E_{R}-1))$		0.994		
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})		620		
v _p * highest directional split prop	ortion ² (pc/h)		360		
Free-Flow Speed from Field Measurement		E	Estimated Free-Flow Speed		
Field Managered annotal C	mi/h	Base free-flow speed, BFFS _{FN}	1	45.0 mi/h	
Field Measured speed, S _{FM}		Adj. for lane width and shoulde	er width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V _f	veh/h	Adj. for access points, f _A (Exhi		2.5 mi/h	
Free-flow speed, FFS FFS= S_{FN}	$_{1}+0.00776(V_{f}/f_{HV})$ mi/h	Free-flow speed, FFS (FSS=E		41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>r</i> .	<i>ni/h</i>) (Exhibit 20-11)	1100 11011 040000, 1110 (1100-1	3.8		
Average travel speed, ATS (mi/l			32.6		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exh			1.00		
Passenger-car equivalents for tru	'		1.1		
Passenger-car equivalents for R			1.0		
	$f_{HV} = 1/(1 + P_T(E_T-1) + P_R(E_R-1))$		0.997		
Two-way flow rate ¹ , v _p (pc/h)=V/			619		
v _p * highest directional split prop			359		
	ng, BPTSF(%)=100(1-e ^{-0.000879v} p)		42.0		
	nd no-passing zone, f _{d/hp} (%)(Exh. 20-12)		20.1		
Percent time-spent-following, PT	**		62.0		
Level of Service and Other Per Level of service, LOS (Exhibit 20	n-3 for Class I or 20-4 for Class II)		С		
Volume to capacity ratio, v/c=V _p /	·		0.19		
'	VMT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		154		
Peak-hour vehicle-miles of trave	I, VMT ₆₀ (veh- <i>mi</i>)=V*L _t		555		
Peak 15-min total travel time, TT			4.7		
Notes	·•	• 			
	analysis-the LOS is F.				

Carear information Step		WAY SEGMENT WORKSHEET	
Ageing of Company April	General Information Applyet SKR	Site Information	
Project Date (1997)	Agency or Company TDOT/TranSystems Date Performed 04/18/2011	From/To South of I-40 Jurisdiction Fayette County	
The part Date The part Dat	,	Analysis Year 2034	
Shoulder width Ti Law width Ti			
Directional spit Shoulder width It	·	Terrain ✓ Level ☐ Ro	olling
Segment length. L ₁	Lane widthft	Directional split 61/3 Peak-hour factor, PHF 0.90 No-passing zone 100	39))
1.00 Passenger car equivalents for trucks, E _T (Exhibit 20-9) 1.2 1.0	Segment length, L _t mi	% Recreational vehicles, P _R 0%	
Passenger-car equivalents for trucks, E _T (Exhibit 20-9) 1.2 Passenger-car equivalents for RVs, E _R (Exhibit 20-9) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Average Travel Speed	•	
Passenger-car equivalents for RVs, E _R (Exhibit 20-9) 1.0 Heavy-vehicle adjustment factor, f _{HV} =1/(1+ P _T (E _T -1)+P _R (E _R -1)) 0.994 Two-way flow rate ¹ , v _p (pch)=V/ (PHF * f _G * f _{HV}) 643 v _p * Nighest directional split proportion ² (pch) 392 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Free-Flow Speed from Field Measurement Adj. for lane width and shoulder width and shoul	Grade adjustment factor, f _G (Exhibit 20-7)	1.00	
Heavy-vehicle adjustment factor, f _{HV} =1/(1+P _T (E _T -1)+P _R (E _R -1))	Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.2	
Two-way flow rate , v _p (br.h) = V (PHF * c f + v v k says s	Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0	
vp * highest directional split proportion? (po/h) 392 Free-Flow Speed from Field Measurement Estimated Free-Flow Speed Field Measured speed, SFM mi/h veh/h Adj. for lane width and shoulder width3, ft_S (Exhibit 20-5) 1.3 mi/h Observed volume, V ₁ veh/h veh/h Adj. for lane width and shoulder width3, ft_S (Exhibit 20-5) 1.3 mi/h Adj. for no-passing zones, ft_ne (mi/h) (Exhibit 20-11) 3.7 Adj. for access points, ft_A (Exhibit 20-6) 2.5 mi/h Average travel speed, ATS (mi/h) ATS=FFS-0.00776v_p-ft_p 32.5 Percent Time-Spent-Following Grade Adjustment factor, ft_G (Exhibit 20-8) 1.00 1.1 Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.1 1.0 Passenger-car equivalents for RVs, E _R (Exhibit 20-10) 1.0 1.0 Heavy-vehicle adjustment factor, ft_nc=ft/(t)=PT(Ft_1)+P _R (E _R -1)) 0.997 43.1 Woway flow rate ¹ , vp_ (pc/h)=V/ (PHF * ft_6 * ft_Hv) 641 43.1 Base percent time-spent-following, BPTSF(%)=BPTSFrf dnp 62.5 43.1 Adj. for directional distribution and no-passing zone, ft_shp(%)(Exh. 20-12) 19.4 45.0 Percent time-spent-following, PTSF(%)=BPTSFrf dnp	Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_{T}-1)+P_R(E_{R}-1))$	0.994	
Free-Flow Speed from Field Measurement Field Measured speed, S _{FM} Observed volume, V ₁ Free-flow speed, FFS FFS=S _{FM} +0.00776(V _f f _{HV}) Nith Adj. for lane width and shoulder width ³ , f _{LS} (Exhibit 20-5) Adj. for access points, f _A (Exhibit 20-6) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS FFS=S _{FM} +0.00776(V _f f _{HV}) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6) Free-flow speed, FFS (FSS=BFFS-f _{LS} -f _A) Adj. for access points, f _A (Exhibit 20-6)	Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})	643	
Field Measured speed, S_{FM} mi/h Observed volume, V_t veh/h	v _p * highest directional split proportion ² (pc/h)	392	
Field Measured speed, S_{FM} observed volume, V_{t} veh/h veh	Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Observed volume, $V_{\rm f}$ Free-flow speed, FFS FFS=S _{FM} +0.00776(V $_{\rm f}$ $V_{\rm fHV}$) mih Adj. for access points, $f_{\rm A}$ (Exhibit 20-6) 2.5 mih Adj. for access points, $f_{\rm A}$ (Exhibit 20-6) 3.7 Average travel speed, ATS (mih) ATS=FFS-0.00776 $v_{\rm p}$ - $f_{\rm np}$ 32.5 Percent Time-Spent-Following Grade Adjustment factor, $f_{\rm G}$ (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, $E_{\rm T}$ (Exhibit 20-10) 1.1 Passenger-car equivalents for RVs, $E_{\rm R}$ (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{\rm HV}$ =T/($f_{\rm HV}$) 9.997 Two-way flow rate $f_{\rm t}$ - $v_{\rm p}$ - $f_{\rm th}$ - $f_{\rm g}$ - $f_{\rm HV}$) 641 $v_{\rm p}$ - highest directional split proportion 2 (pc/h) 3.91 Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000879v_{\rm p}}) 43.1 Adj. for directional distribution and no-passing zone, $f_{\rm aftp}$ (%)(Exh. 20-12) 1.9.4 Percent time-spent-following, PTSF(%)=BPTSF+f_{atrp} 6.25 Level of Service and Other Performance Measures Level of Service and Other Performance Measures Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)=0.25L ₁ (V/PHF) 1.60 Peak-hour vehicle-miles of travel, VMT ₁₅ (veh- m)=VMT ₁₅ (ATS 4.9 Notes	Field Measured speed, S _{FM} mi/h	· · · ·	
Free-flow speed, FFS FFS= $_{FM}^{+}$ 0.00776($_{V_l}^{+}$ 1 $_{HV}^{+}$) $_{HV}^{+}$ $_{HV}^$	Observed volume, V _f veh/h		
Average travel speed, ATS (mih) ATS=FFS-0.00776 v_p -f $_{np}$ 32.5 Percent Time-Spent-Following Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.1 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ P_T (E_T -1)+ P_R (E_R -1)) 0.997 Two-way flow rate f_T , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) 641 v_p * highest directional split proportion² (pc/h) 391 Base percent time-spent-following, BPTSF(%)=100(1-e^{-0.000879v}p) 43.1 Adj. for directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12) 19.4 Percent time-spent-following, PTSF(%)=BPTSF+f_{dinp} 62.5 Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v(c=V_p/3, 2.00)$ 0.20 Peak 15-min veh-miles of travel, VMT $_{15}$ (veh- m)= 0.25L ₁ (V/PHF) 160 Peak-hour vehicle-miles of travel, VMT $_{15}$ (veh- m)= 0.25L ₁ (V/PHF) 4.9 Notes	Free-flow speed, FFS FFS=S _{FM} +0.00776($V_{l'}$ f _{HV}) mi/h		
Percent Time-Spent-Following Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.1 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T^{-1})+P_R(E_R^{-1}))$ 0.997 Two-way flow rate f_V , v_p (pc/h)=V/ (PHF f_G f_H) 641 v_p * highest directional split proportion f_V (pc/h) 391 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 43.1 Adj. for directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12) 19.4 Percent time-spent-following, PTSF(%)=BPTSF+f_{drip} 62.5 Level of Service and Other Performance Measures 5 Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p'$ 3,200 0.20 Peak 15-min veh-miles of travel, VMT ₆₀ (veh- m)= 0.25L ₁ (V/PHF) 160 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)= VMT ₁₅ (ATS 4.9 Notes	Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	3.7	
Grade Adjustment factor, f_G (Exhibit 20-8) 1.00 Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.1 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 7. Two-way flow rate ¹ , v_p (pc/h)= $V/(PHF * f_G * f_{HV})$ 9. 40 1.0 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ 1.0 9. 997 Two-way flow rate ¹ , v_p (pc/h)= $V/(PHF * f_G * f_{HV})$ 9. 40 41 Power and time-spent-following, BPTSF(%)=100(1-e-0.000879v_p) 43.1 Adj. for directional distribution and no-passing zone, $f_{dhp}(\%)(Exh. 20-12)$ Percent time-spent-following, PTSF(%)=BPTSF+f dnp 62.5 Level of Service and Other Performance Measures Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3$, 3.200 0.20 Peak 15-min veh-miles of travel, VMT_{15} (veh- m)= 0.25L ₁ (V/PHF) 160 Peak-hour vehicle-miles of travel, VMT_{15} (veh- m)= V^*L_t 575 Peak 15-min total travel time, TT_{15} (veh-h)= VMT_{15}/ATS Notes	Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}	32.5	
Passenger-car equivalents for trucks, E_T (Exhibit 20-10) 1.1 Passenger-car equivalents for RVs, E_R (Exhibit 20-10) 1.0 Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T^{-1})+P_R(E_R^{-1}))$ 0.997 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) 641 v_p * highest directional split proportion² (pc/h) 391 Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) 43.1 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) Percent time-spent-following, PTSF(%)=BPTSF+ $f_{d/np}$ 62.5 Level of Service and Other Performance Measures Level of Service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3$, 200 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L ₁ (V/PHF) Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V ¹ L ₁ 575 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS Notes	Percent Time-Spent-Following		
Passenger-car equivalents for RVs, E_R (Exhibit 20-10) Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T^{-1})+P_R(E_R^{-1}))$ 0.997 Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV}) v_p * highest directional split proportion ² (pc/h) Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p) v_p * no directional distribution and no-passing zone, f_{dhp} (%)(Exh. 20-12) Percent time-spent-following, PTSF(%)=BPTSF+ff v_p (%)(Exh. 20-12) v_p * proper time-spent-following, PTSF(%)=BPTSF+ff v_p (%) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p (%)(Exh. 20-12) v_p * no directional distribution and no-passing zone, v_p * no directional distribution and no directional distribution and no distribution a	Grade Adjustment factor, f _G (Exhibit 20-8)	1.00	
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$ Two-way flow rate 1 , v_p (pc/h)=V/ (PHF * *f_G * $^*f_{HV}$) v_p * highest directional split proportion 2 (pc/h) Base percent time-spent-following, BPTSF(%)=100(1-e-0.000879v_p) 43.1 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) Percent time-spent-following, PTSF(%)=BPTSF+ $f_{d/np}$ 62.5 Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3$, 3,200 Peak 15-min veh-miles of travel, VMT_{15} (veh- m)= 0.25L ₁ (V/PHF) Peak-hour vehicle-miles of travel, VMT_{15} (veh- m)= V^*L_1 Foreign total travel time, TT_{15} (veh-h)= VMT_{15}/ATS Notes	Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.1	
Two-way flow rate 1 , v_p (pc/h)=V/ (PHF * *f_G * $^*f_{HV}$) 641 v_p * highest directional split proportion 2 (pc/h) 391 Base percent time-spent-following, BPTSF(%)=100(1-e-0.000879 v_p) 43.1 Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) 19.4 Percent time-spent-following, PTSF(%)=BPTSF+f $_{d/np}$ 62.5 Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3$,200 0.20 Peak 15-min veh-miles of travel, VMT $_{15}$ (veh- m)= 0.25L ₁ (V/PHF) 160 Peak-hour vehicle-miles of travel, VMT $_{60}$ (veh- m)=V*L ₁ 575 Peak 15-min total travel time, TT $_{15}$ (veh-h)= VMT $_{15}$ /ATS 4.9 Notes	Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0	
$v_{p} * \text{highest directional split proportion}^{2} (\text{pc/h}) \\ \text{Base percent time-spent-following, BPTSF}(\%) = 100(1-e^{-0.000879v}p) \\ \text{43.1} \\ \text{Adj. for directional distribution and no-passing zone, } f_{d/hp}(\%)(\text{Exh. 20-12}) \\ \text{Percent time-spent-following, PTSF}(\%) = \text{BPTSF+f}_{d/hp} \\ \text{62.5} \\ \text{Level of Service and Other Performance Measures} \\ \text{Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)} \\ \text{C} \\ \text{Volume to capacity ratio, } v/c = V_{p}/3,200 \\ \text{Peak 15-min veh-miles of travel, } VMT_{15} (\text{veh-}mi) = 0.25L_{t}(V/PHF) \\ \text{Peak-hour vehicle-miles of travel, } VMT_{60}(\text{veh-}mi) = V^{*}L_{t} \\ \text{Peak 15-min total travel time, } TT_{15}(\text{veh-}h) = VMT_{15}/ATS} \\ \text{Notes} \\ \text{Notes}$	Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	0.997	
Base percent time-spent-following, BPTSF(%)= $100(1-e^{-0.000879V_p})$ Adj. for directional distribution and no-passing zone, $f_{d/hp}$ (%)(Exh. 20-12) Percent time-spent-following, PTSF(%)=BPTSF+ $f_{d/np}$ 62.5 Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3$,200 Peak 15-min veh-miles of travel, VMT_{15} (veh- m)= 0.25L _t (V/PHF) 160 Peak-hour vehicle-miles of travel, VMT_{60} (veh- m)= V^*L_t 575 Peak 15-min total travel time, TT_{15} (veh-h)= VMT_{15} /ATS Notes	Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})	641	
Adj. for directional distribution and no-passing zone, $f_{d/hp}(\%)(Exh. 20-12)$ Percent time-spent-following, PTSF(%)=BPTSF+f $_{d/hp}$ 62.5 Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, $v/c=V_p/3$, 200 Peak 15-min veh-miles of travel, VMT_{15} (veh- mi)= 0.25L _t (V/PHF) Peak-hour vehicle-miles of travel, VMT_{60} (veh- mi)= V^*L_t Peak 15-min total travel time, TT_{15} (veh-h)= VMT_{15}/ATS Notes	v _p * highest directional split proportion ² (pc/h)	391	
Percent time-spent-following, PTSF(%)=BPTSF+f d/np 62.5 Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) C Volume to capacity ratio, v/c=V _p /3,200 Peak 15-min veh-miles of travel, VMT ₁₅ (veh- m)= 0.25L _t (V/PHF) Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- m)=V*L _t Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS Notes	Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	43.1	
Level of Service and Other Performance MeasuresLevel of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)CVolume to capacity ratio, $v/c=V_p/3,200$ 0.20Peak 15-min veh-miles of travel, VMT_{15} (veh- mi)= 0.25L _t (V/PHF)160Peak-hour vehicle-miles of travel, VMT_{60} (veh- mi)= V^*L_t 575Peak 15-min total travel time, TT_{15} (veh-h)= VMT_{15}/ATS 4.9Notes	Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12)	19.4	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) Volume to capacity ratio, $v/c=V_p/3$,200 Peak 15-min veh-miles of travel, VMT_{15} (veh- m)= $0.25L_t(V/PHF)$ Peak-hour vehicle-miles of travel, VMT_{60} (veh- m)= V^*L_t Peak 15-min total travel time, TT_{15} (veh-h)= VMT_{15}/ATS Notes	* 1	62.5	
Volume to capacity ratio, $v/c=V_p/3,200$ Peak 15-min veh-miles of travel, VMT_{15} (veh- m)= $0.25L_t(V/PHF)$ 160 Peak-hour vehicle-miles of travel, VMT_{60} (veh- m)= V^*L_t 575 Peak 15-min total travel time, TT_{15} (veh-h)= VMT_{15}/ATS 4.9 Notes			
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) 160 Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 575 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.9 Notes		<u>†</u>	
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t 575 Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.9 Notes	г		
Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS 4.9 Notes		575	
		4.9	
		<u> </u>	

Generated: 4/20/2011 10:57 AM

General Information		Site Information			
Analyst	SKB	Highway	SR 59		
Agency or Company	TDOT/TranSystems	From/To	North of I-40		
Date Performed Analysis Time Period	04/18/2011 PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2034		
Project Description: Existing Con		Analysis Teal	2004		
Input Data					
			Class I highway Class II highway		
L		'	• ,		
	Shoulder width		errain Level Rolling		
*	Lane width		wo-way hourly volume 531 veh/h irectional split 56 / 44		
	Lane width	_tt Pe	eak-hour factor, PHF 0.90		
	Shoulder width	\ \ /	o-passing zone 100		
Sagment	length, L, mi	Show North Arrow %	% Trucks and Buses , P _T 3 %		
Segment	length, L _t mi	%	Recreational vehicles, P _R 0%		
		Ad	ccess points/ mi 10		
Average Travel Speed		•			
Grade adjustment factor, f _G (Exhit	pit 20-7)		1.00		
Passenger-car equivalents for truc	cks, E _T (Exhibit 20-9)		1.2		
Passenger-car equivalents for RV	s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor, f	f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.994		
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f _G * f _{HV})		594		
v _p * highest directional split proportion ² (pc/h)			333		
Free-Flow Sp	peed from Field Measurement		Estimated Free-Flow Speed		
Field Managered around C	mi/h	Base free-flow speed, BFF	S _{FM} 45.0 mi/		
Field Measured speed, S _{FM}		Adj. for lane width and sho	ulder width ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh/h	Adj. for access points, f _A (E	Exhibit 20-6) 2.5 mi/h		
Free-flow speed, FFS FFS=S _{FM} +	$-0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FS			
Adj. for no-passing zones, f _{np} (<i>mi</i>	i/h) (Exhibit 20-11)		3.9		
Average travel speed, ATS (mi/h)	ATS=FFS-0.00776v _p -f _{np}		32.7		
Percent Time-Spent-Following		•			
Grade Adjustment factor, f _G (Exhil	bit 20-8)		1.00		
Passenger-car equivalents for true			1.1		
Passenger-car equivalents for RV	1		1.0		
Heavy-vehicle adjustment factor, f			0.997		
Two-way flow rate ¹ , v _p (pc/h)=V/ (592		
v _p * highest directional split propor			332		
Base percent time-spent-following			40.6		
	I no-passing zone, f _{d/hp} (%)(Exh. 20-12)		20.7		
Percent time-spent-following, PTSF(%)=BPTSF+f d/np			61.3		
Level of Service and Other Performance Level of service, LOS (Exhibit 20-3)	ormance Measures	<u> </u>	С		
Volume to capacity ratio, v/c=V _p /3	·		0.19		
Peak 15-min veh-miles of travel, \			148		
Peak-hour vehicle-miles of travel,			531		
Peak 15-min total travel time, TT _{1:}			4.5		
Notes		<u> </u>			
	nalysis-the LOS is F.				

General Information		Site	Information		
Analyst	SKB		way	SR 59	
Agency or Company	TDOT/TranSystems	Fron	n/To	South of I-40	
Date Performed Analysis Time Period	04/18/2011 PM Peak Hour		sdiction lysis Year	Fayette County 2034	
Project Description: Existing Co		Allai	ysis i eai	2034	
nput Data					
				Class I highway Class II h	. California
L				* ·	
	\$ Shoulder width	ft		Terrain Level Roll	
*	Lane width	ft /		Two-way hourly volume 549 ve Directional split 54 / 46	
	Lane width	ft \	$\overline{}$	Peak-hour factor, PHF 0.90	
	Shoulder width	ft _	$\langle / $	No-passing zone 100	
- Samuel	Howards I mi	- S	now North Arrow	% Trucks and Buses , P _T 3 %	
Segmen	t length, L _t mi	14		% Recreational vehicles, P _R 0%	
				Access points/ mi 10	
Average Travel Speed		,			
Grade adjustment factor, f _G (Exh	ibit 20-7)			1.00	
Passenger-car equivalents for tru	icks, E _T (Exhibit 20-9)			1.2	
Passenger-car equivalents for R\	√s, E _R (Exhibit 20-9)			1.0	
Heavy-vehicle adjustment factor,	$f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$			0.994	
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})			614	
v _p * highest directional split propo	ortion ² (pc/h)		332		
Free-Flow S	peed from Field Measurement			Estimated Free-Flow Speed	
Field Measured speed, S _{FM}	m	ni/h	e free-flow speed	I, BFFS _{FM}	45.0 mi/h
		Adj.	for lane width an	d shoulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h
Observed volume, V _f		eh/h Adj.	for access points	s, f _A (Exhibit 20-6)	2.5 mi/h
Free-flow speed, FFS FFS=S _{FM}	$+0.00776(V_f/f_{HV})$ m	ni/h		S (FSS=BFFS-f _{LS} -f _A)	41.2 mi/h
Adj. for no-passing zones, f _{np} (<i>n</i>	ni/h) (Exhibit 20-11)		3.8		
Average travel speed, ATS (mi/t			32.6		
Percent Time-Spent-Following		•			
Grade Adjustment factor, f _G (Exh	iibit 20-8)			1.00	
Passenger-car equivalents for tru				1.1	
Passenger-car equivalents for R\	1.5		1.0		
	f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.997		
Two-way flow rate ¹ , v _p (pc/h)=V/			612		
v _p * highest directional split propo			330		
•	g, BPTSF(%)=100(1-e ^{-0.000879v} p)			41.6	
	d no-passing zone, f _{d/hp} (%)(Exh. 20-1	12)	20.2		
Percent time-spent-following, PT	· · · · · · · · · · · · · · · · · · ·	<u> </u>	61.9		
Level of Service and Other Per	formance Measures				
·	-3 for Class I or 20-4 for Class II)			С	
Volume to capacity ratio, v/c=V _p /				0.19	
	VMT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)			153	
Peak-hour vehicle-miles of travel	, VMT ₆₀ (veh- <i>mi</i>)=V*L _t			549	
Peak 15-min total travel time, TT	₁₅ (veh-h)= VMT ₁₅ /ATS			4.7	
Notes	analysis the LOS is E				
1. If Vp >= 3,200 pc/h, terminate	analysis-the LOS is F. - 1,700 pc/h, terminated anlysis-the L0				

General Information		Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company	TDOT/TranSystems	From/To	North of I-40		
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Con		p many size is sum			
nput Data					
			Class I highway Class II h	nighway	
			Terrain Level Roll	-	
	Shoulder width	= 	Two-way hourly volume 1485 v		
	Lane width	<u> </u>	Directional split 65 / 35		
-	Lane width Shoulder width		Peak-hour factor, PHF 0.90 No-passing zone 100		
	3 Silouidei Widii	- -1 \	No-passing zone 100 % Trucks and Buses , P _T 10 %		
Segment	length, L _t mi	Show North Arrow	•		
	3 1	.le	% Recreational vehicles, P _R 0%		
			Access points/ mi 10		
Average Travel Speed					
Grade adjustment factor, f _G (Exhib	pit 20-7)		1.00		
Passenger-car equivalents for truc			1.1		
Passenger-car equivalents for RV	s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor, f	$E_{HV} = 1/(1 + P_T(E_T-1) + P_R(E_R-1))$		0.990		
Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})		1667		
v _p * highest directional split proportion ² (pc/h)			1084		
Free-Flow Sp	eed from Field Measurement		Estimated Free-Flow Speed		
Field Measured speed, S _{FM}	mi	Base free-flow spe	* ***	45.0 mi/h	
	veh	Adj. for lane width	and shoulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V _f		Adj. for access poi	nts, f _A (Exhibit 20-6)	2.5 mi/h	
Free-flow speed, FFS FFS=S _{FM} +	$0.00776(V_f/f_{HV})$ mi	/h I	FS (FSS=BFFS-f _{LS} -f _A)	41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>mi</i>	/h) (Exhibit 20-11)		1.4		
Average travel speed, ATS (mi/h)			26.8		
Percent Time-Spent-Following	9 119				
Grade Adjustment factor, f _G (Exhit	bit 20-8)		1.00		
Passenger-car equivalents for truc			1.0		
Passenger-car equivalents for RV			1.0		
Heavy-vehicle adjustment factor, f			1.000		
Two-way flow rate ¹ , v _p (pc/h)=V/ (1650		
v_p * highest directional split propor					
•			76.6		
Base percent time-spent-following		2)	6.6		
	no-passing zone, f _{d/hp} (%)(Exh. 20-12	- /	83.1		
Percent time-spent-following, PTS Level of Service and Other Perfo			03.1		
Level of service, LOS (Exhibit 20-3			D		
/olume to capacity ratio, v/c=V _p /3	3,200		0.52		
Peak 15-min veh-miles of travel, V	/MT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		413		
Peak-hour vehicle-miles of travel,			1485		
Peak 15-min total travel time, TT _{1!}			15.4		
Notes	. 10	<u>I</u>			
	nalysis-the LOS is F.				

General Information		Site In:	ormation		
Analyst	SKB	Highwa		SR 222	
Agency or Company	TDOT/TranSystems	From/T	Ó	I-40 to Pilot Dwy.	
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdio Analysi		Fayette County 2014	
Project Description: Existing Cor		ļa.ya.			
nput Data					
				Class I highway Class II I	nighway
 		1			
	3 Shoulder width	tt		Terrain Level Roll Two-way hourly volume 673 vo	
	Lane width	tt	1	Directional split 51 / 49	
	↓ Lane width ↓ Shoulder width	n		Peak-hour factor, PHF 0.90 No-passing zone 100	
	Shoulder width			No-passing zone 100 % Trucks and Buses , P _T 48 %	
Segment	length, L _t mi	Show	North Arrow	·	'
	3 1	al.		% Recreational vehicles, P _R 0%	
				Access points/ mi 10	
Average Travel Speed					
Grade adjustment factor, f _G (Exhil	bit 20-7)			1.00	
Passenger-car equivalents for true	cks, E _T (Exhibit 20-9)			1.2	
Passenger-car equivalents for RV	s, E _R (Exhibit 20-9)			1.0	
Heavy-vehicle adjustment factor, t	$f_{HV} = 1/(1 + P_T(E_{T}-1) + P_R(E_{R}-1))$			0.912	
Two-way flow rate ¹ , v _p (pc/h)=V/ (820	
v _p * highest directional split proportion ² (pc/h)			418		
Free-Flow Sp	peed from Field Measurement			Estimated Free-Flow Speed	
Field Measured sneed S	n	Base fr	ee-flow speed	d, BFFS _{FM}	45.0 mi/h
Field Measured speed, S _{FM}		Adj. for	lane width an	nd shoulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h
Observed volume, V _f		eh/h Adj. for	access points	s, f _A (Exhibit 20-6)	2.5 mi/h
Free-flow speed, FFS FFS=S _{FM} +	$-0.00776(V_f/f_{HV})$ n	ni/h		S (FSS=BFFS-f _{LS} -f _A)	41.2 mi/h
Adj. for no-passing zones, f _{np} (<i>mi</i>	<i>i/h</i>) (Exhibit 20-11)		3.0		
Average travel speed, ATS (<i>mi/h</i>)		İ	31.9		
Percent Time-Spent-Following	· ·				
Grade Adjustment factor, f _G (Exhi	bit 20-8)			1.00	
Passenger-car equivalents for true		<u> </u>		1.1	
Passenger-car equivalents for RV	1		1.0		
Heavy-vehicle adjustment factor, t			0.954		
Two-way flow rate ¹ , v _p (pc/h)=V/ (784		
v_p^* highest directional split propo	-			400	
•				49.8	
Base percent time-spent-following		12)	15.7		
	Ino-passing zone, f _{d/hp} (%)(Exh. 20-	12)	65.5		
Percent time-spent-following, PTS Level of Service and Other Perf	**			00.0	
_evel of service, LOS (Exhibit 20-				С	
/olume to capacity ratio, v/c=V _p /	3,200			0.26	
Peak 15-min veh-miles of travel, \				187	
Peak-hour vehicle-miles of travel,				673	
Peak 15-min total travel time, TT ₁				5.9	
Notes	- 10				

General Information		Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To	South of Pilot Dwy.		
Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Cond		j manyana maan			
nput Data					
			Class I highway Class II highway		
+		4			
	\$\frac{1}{2} \text{ Shoulder width }	_tt	Terrain Level Rolling Two-way hourly volume 462 veh/h		
-	Lane width	tt	Directional split 56 / 44		
	Lane width		Peak-hour factor, PHF 0.90		
	Shoulder width	= <u>t</u> t	No-passing zone 100		
Sogment I	ength, L _t mi	Show North Arrow	% Trucks and Buses , P _T 3 %		
Segment	engin, 4 m	4	% Recreational vehicles, P _R 0%		
			Access points/ mi 10		
Average Travel Speed					
Grade adjustment factor, f _G (Exhib	it 20-7)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-9)		1.7		
Passenger-car equivalents for RVs	s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor, f	_{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.979		
Two-way flow rate ¹ , v _p (pc/h)=V/ (F	PHF * f _G * f _{HV})		524		
v _p * highest directional split proport	tion ² (pc/h)		293		
Free-Flow Sp	eed from Field Measurement		Estimated Free-Flow Speed		
Field Measured speed S	mi/	Base free-flow speed	d, BFFS _{FM} 45.0 mi/h		
Field Measured speed, S _{FM}		Adj. for lane width ar	nd shoulder width ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh	Adj. for access point	ts, f_{Λ} (Exhibit 20-6) 2.5 mi/h		
Free-flow speed, FFS FFS=S _{FM} +0	0.00776(V _f / f _{HV}) <i>mi/</i>	'h I	S (FSS=BFFS- f_{LS} - f_A) 41.2 mi/h		
Adj. for no-passing zones, f _{np} (<i>mi/</i>	/h) (Exhibit 20-11)		4.1		
Average travel speed, ATS (mi/h)			33.0		
Percent Time-Spent-Following	р пр	<u> </u>			
Grade Adjustment factor, f _G (Exhib	uit 20-8)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for RVs			1.0		
Heavy-vehicle adjustment factor, f			0.997		
Two-way flow rate ¹ , v _p (pc/h)=V/ (F			515		
v _p * highest directional split proport			288		
Base percent time-spent-following,	BPTSF(%)=100(1-e ^{-0.000879v} p)		36.4		
Adj. for directional distribution and	no-passing zone, f _{d/hp} (%)(Exh. 20-12	2)	21.7		
Percent time-spent-following, PTSI	**		58.1		
Level of Service and Other Performance Level of service, LOS (Exhibit 20-3)		<u> </u>	С		
/olume to capacity ratio, v/c=V _D / 3	·		0.16		
Peak 15-min veh-miles of travel, V			128		
Peak-hour vehicle-miles of travel,			462		
Peak 15-min total travel time, TT ₁₅			3.9		
Notes	7 312	<u> </u>			
10100					

General Information		Site Information		
Analyst	SKB	Highway	SR 222	
Agency or Company	TDOT/TranSystems	From/To	North of I-40	
Date Performed Analysis Time Period	04/18/2011 PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014	
Project Description: Existing Cor		r manyone real	20	
nput Data				
			Class I highway Class II	highway
 		.	* *	
		\exists \Box \Box	Terrain Level Ro	olling 7 veh/h
		\exists 17 1 1	Directional split 60 / 4	40
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2			Peak-hour factor, PHF 0.90 No-passing zone 100	
		- 1 \ /	% Trucks and Buses , P _T 10 %	
Segment	length, L _t mi		% Recreational vehicles, P _R 0%	
			•••	
1			Access points/ mi 10	
Average Travel Speed	-:- 00.7)		4.00	
Grade adjustment factor, f _G (Exhil			1.00	
Passenger-car equivalents for true	cks, E _T (Exhibit 20-9)		1.1	
Passenger-car equivalents for RV	s, E _R (Exhibit 20-9)		1.0	
Heavy-vehicle adjustment factor, t	$f_{HV} = 1/(1 + P_T(E_T - 1) + P_R(E_R - 1))$		0.990	
Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})		1489	
v _p * highest directional split propo			893	
Free-Flow Sp	peed from Field Measurement		Estimated Free-Flow Speed	
Field Measured apped S	mi/h	Base free-flow speed, BFF	FS _{FM}	45.0 mi/h
Field Measured speed, S _{FM}		Adj. for lane width and sho	oulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h
Observed volume, V _f	veh/h	Adj. for access points, f _A ((Exhibit 20-6)	2.5 mi/h
Free-flow speed, FFS FFS=S _{FM} +	$-0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FS	SS=BFFS-f _{LS} -f _A)	41.2 mi/h
Adj. for no-passing zones, f _{np} (<i>mi</i>	i/h) (Exhibit 20-11)		1.6	
Average travel speed, ATS (mi/h)	ATS=FFS-0.00776v _p -f _{np}		28.0	
Percent Time-Spent-Following				
Grade Adjustment factor, f _G (Exhi	bit 20-8)		1.00	
Passenger-car equivalents for true	cks, E _T (Exhibit 20-10)		1.0	
Passenger-car equivalents for RV	s, E _R (Exhibit 20-10)		1.0	
Heavy-vehicle adjustment factor, t	$f_{HV} = 1/(1 + P_T(E_T - 1) + P_R(E_R - 1))$		1.000	
「wo-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})		1474	
$v_{ m p}^{~*}$ highest directional split propo	rtion ² (pc/h)		884	
Base percent time-spent-following	, BPTSF(%)=100(1-e ^{-0.000879v} p)		72.6	
Adj. for directional distribution and	no-passing zone, f _{d/hp} (%)(Exh. 20-12)		7.6	
Percent time-spent-following, PTS	* 1		80.3	
Level of Service and Other Perf				
Level of service, LOS (Exhibit 20-			D 0.47	
/olume to capacity ratio, v/c=V _p /			0.47	
Peak 15-min veh-miles of travel, \			369	
Peak-hour vehicle-miles of travel,			1327	
Peak 15-min total travel time, TT ₁	₅ (veh-h)= VMT ₁₅ /ATS		13.2	
Notes				

Generated: 4/20/2011 11:09 AM

General Information		Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company Date Performed	TDOT/TranSystems	From/To	I-40 to Pilot Dwy.		
Date Performed Analysis Time Period	04/18/2011 PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Conditions		, ,			
nput Data					
			Class I highway Class II h	nighway	
	4 -5	- + 4			
	Shoulder width	tt	Terrain Level Rolli Two-way hourly volume 667 ve		
<u> </u>	Lane width	_tt	Directional split 57 / 43		
	Lane width Shoulder width	_ft	Peak-hour factor, PHF 0.90 No-passing zone 100		
	Shoulder widdi		% Trucks and Buses , P _T 48 %		
Segment length	n, L _t mi	Show North Arrow	•		
1	300 5	:4	% Recreational vehicles, P _R 0%		
			Access points/ mi 10		
Average Travel Speed		<u> </u>			
Grade adjustment factor, f _G (Exhibit 20-	7)		1.00		
Passenger-car equivalents for trucks, E	(Exhibit 20-9)		1.2		
Passenger-car equivalents for RVs, E _R (1.0		
Heavy-vehicle adjustment factor, f _{HV} =1/	$(1+ P_T(E_{T}-1)+P_R(E_{R}-1))$		0.912		
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF *	$f_G * f_{HV}$		812		
v _p * highest directional split proportion ² (pc/h)			463		
Free-Flow Speed fr	om Field Measurement		Estimated Free-Flow Speed		
Field Measured speed, S _{FM}	mi/h	Base free-flow speed,	BFFS _{FM}	45.0 mi/h	
		Adj. for lane width and	d shoulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V _f	veh/i	Adj. for access points	, f _A (Exhibit 20-6)	2.5 mi/h	
Free-flow speed, FFS FFS=S _{FM} +0.007	$76(V_f/f_{HV})$ mi/h	Free-flow speed, FFS	• •	41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Ex	khibit 20-11)		3.0		
Average travel speed, ATS (mi/h) ATS=			31.9		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exhibit 20-	8)		1.00		
			1.1		
Passenger-car equivalents for trucks, E ₁	1		1.0		
Passenger-car equivalents for RVs, E _R (
Heavy-vehicle adjustment factor, f _{HV} =1/			0.954		
Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF *	-		777		
v _p * highest directional split proportion ² (443		
Base percent time-spent-following, BPT			49.5		
Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12))	15.4		
Percent time-spent-following, PTSF(%)=	**		64.9		
Level of Service and Other Performan Level of service, LOS (Exhibit 20-3 for C			С		
olume to capacity ratio, v/c=V _p / 3,200			0.25		
Peak 15-min veh-miles of travel, VMT ₁₅	(veh- <i>mi</i>)= 0.25L _t (V/PHF)		185		
Peak-hour vehicle-miles of travel, VMT ₆	<u> </u>		667		
Peak 15-min total travel time, TT ₁₅ (veh-			5.8		
Notes	10	<u> </u>			

General Information	Site Information			
nalyst SKB	Highway	SR 222		
gency or Company TDOT/TranSystems Date Performed 04/18/2011	From/To	South of Pilot Dwy.		
Date Performed 04/18/2011 Analysis Time Period PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Conditions (No Build)		· · · · · · · · · · · · · · · · · · ·		
nput Data				
		Class I highway Class II highway		
Shoulder width		Terrain Level Rolling Two-way hourly volume 400 veh/h		
Lane width		Directional split 64 / 36		
Lane width		Peak-hour factor, PHF 0.90		
\$\frac{1}{4}\$ Shoulder width	1	No-passing zone 100 % Trucks and Buses , P _T 3%		
Segment length, L _t mi	5024	•		
	al	% Recreational vehicles, P _R 0%		
		Access points/ mi 10		
Average Travel Speed				
Grade adjustment factor, f _G (Exhibit 20-7)		1.00		
'assenger-car equivalents for trucks, E _T (Exhibit 20-9)		1.7		
assenger-car equivalents for RVs, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_{T}-1)+P_R(E_{R}-1))$		0.979		
wo-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})		454		
p * highest directional split proportion ² (pc/h)		291		
Free-Flow Speed from Field Measurement		Estimated Free-Flow Speed		
rield Measured speed, S _{FM} n	Base free-flow speed, BF			
	Adj. for lane width and sh	noulder width ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
· · · · · · · · · · · · · · · · · · ·	Adj. for access points, f _Δ	(Exhibit 20-6) 2.5 mi/h		
Free-flow speed, FFS FFS= S_{FM} +0.00776(V_f / f_{HV})	ni/h Free-flow speed, FFS (F			
dj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)		4.3		
vverage travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}		33.3		
Percent Time-Spent-Following	•			
Grade Adjustment factor, f _G (Exhibit 20-8)		1.00		
Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	<u> </u>	1.1		
- 1		1.0		
Passenger-car equivalents for RVs, E _R (Exhibit 20-10)		0.997		
leavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		446		
wo-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})				
p * highest directional split proportion ² (pc/h)		285		
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	12)	32.4		
dj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-	12)	22.2		
Percent time-spent-following, PTSF(%)=BPTSF+f d/np Level of Service and Other Performance Measures		54.6		
evel of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)		В		
olume to capacity ratio, v/c=V _p / 3,200		0.14		
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF)		111		
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- <i>mi</i>)=V*L _t		400		
Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS		3.3		
votes	I			
. If Vp >= 3,200 pc/h, terminate analysis-the LOS is F.				

General Information		Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To	North of I-40 Fayette County		
Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Payette County 2034		
Project Description: Existing Co		i manyere i ean			
nput Data					
		Г	Class I highway Class II highway		
		4	errain Level Rolling		
<u> </u>	Shoulder width		wo-way hourly volume 1503 veh/h		
	Lane width		irectional split 64 / 36		
-	Lane width Shoulder width		eak-hour factor, PHF 0.90 o-passing zone 100		
L	3 Shoulder width		% Trucks and Buses , P _T 10 %		
Segmen	t length, L _t mi	50.54	•		
			Recreational vehicles, P _R 0%		
		A	ccess points/ mi 10		
Average Travel Speed					
Grade adjustment factor, f _G (Exh	nibit 20-7)		1.00		
Passenger-car equivalents for tru	•		1.1		
Passenger-car equivalents for R			1.0		
	$f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$		0.990		
Fwo-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			1687		
v _p * highest directional split prop	ortion ² (pc/h)		1080		
Free-Flow S	Speed from Field Measurement		Estimated Free-Flow Speed		
Field Measured speed S	mi/h	Base free-flow speed, BFF	S _{FM} 45.0 mi/h		
Field Measured speed, S _{FM}		Adj. for lane width and sho	ulder width ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh/f	Adj. for access points, f _Δ (E			
Free-flow speed, FFS FFS=S _{FM}	$_{\rm H}+0.00776(V_{\rm f}/{\rm f_{HV}})$ mi/h	Free-flow speed, FFS (FS			
Adj. for no-passing zones, f _{np} (<i>n</i>	ni/h) (Exhibit 20-11)		1.4		
Average travel speed, ATS (mi/l			26.7		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exh	nibit 20-8)		1.00		
Passenger-car equivalents for tru			1.0		
Passenger-car equivalents for R'	1		1.0		
	, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		1.000		
Two-way flow rate ¹ , v_p (pc/h)=V/			1670		
v_p * highest directional split prop	-		1069		
'	ug, BPTSF(%)=100(1-e ^{-0.000879v} p)		77.0		
	nd no-passing zone, f _{d/hp} (%)(Exh. 20-12)		6.4		
Percent time-spent-following, PT			83.4		
Level of Service and Other Per		i			
evel of service, LOS (Exhibit 20	-3 for Class I or 20-4 for Class II)		D		
/olume to capacity ratio, v/c=V _p /	7 3,200		0.53		
eak 15-min veh-miles of travel,	VMT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		418		
Peak-hour vehicle-miles of travel	I, VMT ₆₀ (veh- <i>mi</i>)=V*L _t		1503		
Peak 15-min total travel time, TT	15(veh-h)= VMT ₁₅ /ATS		15.7		
Votes					
1. If Vp >= 3,200 pc/h, terminate	analysis-the LOS is F.				

General Information		Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company	TDOT/TranSystems	From/To	I-40 to Pilot Dwy.		
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2034		
Project Description: Existing Co		, maryoto 1 odi	2007		
nput Data	· · · · · ·				
			Class I highway Class II highway		
L		4			
	\$\frac{1}{2} Shoulder width	_tt	Terrain Level Rolling Two-way hourly volume 791 yeh/h		
-	Lane width		Two-way hourly volume 791 veh/h Directional split 52 / 48		
	Lane width	_ft	Peak-hour factor, PHF 0.90		
	Shoulder width	= <u>*</u>	No-passing zone 100		
Sormani	t length, L _t mi	Show North Arrow	% Trucks and Buses , P _T 48 %		
Segment	riengal, L	J	% Recreational vehicles, P _R 0%		
			Access points/ mi 10		
Average Travel Speed		•			
Grade adjustment factor, f _G (Exh	ibit 20-7)		1.00		
Passenger-car equivalents for tru	ucks, E _T (Exhibit 20-9)		1.2		
Passenger-car equivalents for R\	Vs, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor,	$f_{HV} = 1/(1 + P_T(E_T-1) + P_R(E_R-1))$		0.912		
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})		963		
v _p * highest directional split propo	ortion ² (pc/h)		501		
Free-Flow S	peed from Field Measurement		Estimated Free-Flow Speed		
Field Magazzad apaed C	mi/h	Base free-flow speed, BF	FFS _{FM} 45.0 mi/l		
Field Measured speed, S _{FM}		Adj. for lane width and sh	noulder width ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh/l	Adj. for access points, f _A	(Exhibit 20-6) 2.5 <i>mi/h</i>		
Free-flow speed, FFS FFS=S _{FM}	$+0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (F			
Adj. for no-passing zones, f _{np} (<i>n</i>	ni/h) (Exhibit 20-11)		2.7		
Average travel speed, ATS (mi/h			31.1		
Percent Time-Spent-Following		,			
Grade Adjustment factor, f _G (Exh	nibit 20-8)		1.00		
			1.1		
Passenger-car equivalents for tru	'		1.0		
	f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.954		
Two-way flow rate ¹ , v _p (pc/h)=V/			921		
v_p^* highest directional split propo			479		
•	g, BPTSF(%)=100(1-e ^{-0.000879v} p)		55.5		
	d no-passing zone, f _{d/hp} (%)(Exh. 20-12)		13.7		
Percent time-spent-following, PT	· · ·		69.2		
Level of Service and Other Per					
evel of service, LOS (Exhibit 20	-3 for Class I or 20-4 for Class II)		С		
/olume to capacity ratio, v/c=V _p /	3,200		0.30		
Peak 15-min veh-miles of travel,	VMT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		220		
Peak-hour vehicle-miles of travel	, VMT ₆₀ (veh- <i>mi</i>)=V*L _t		791		
Peak 15-min total travel time, TT	₁₅ (veh-h)= VMT ₁₅ /ATS		7.1		
Notes	analysis the LOC is 5				
1. If Vp >= 3,200 pc/h, terminate	analysis-the LOS is F. = 1,700 pc/h, terminated anlysis-the LOS				

General Information		Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company	TDOT/TranSystems	From/To	South of Pilot Dwy.		
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2034		
Project Description: Existing Con		1 ,			
nput Data					
		l I	Class I highway Class II	highway	
 			errain Level Ro		
				veh/h	
			irectional split 58 / 4	42	
-			eak-hour factor, PHF 0.90 o-passing zone 100		
		- 1 \ /	% Trucks and Buses , P _T 3 %		
Segment	length, L _t mi	- 502 d	Recreational vehicles, P _R 0%		
ÿI			ccess points/ mi		
Average Travel Speed		^	ccess points/ mi /c	,	
<u> </u>	nit 20.7\		1.00		
Grade adjustment factor, f _G (Exhib					
Passenger-car equivalents for truc	i		1.2		
Passenger-car equivalents for RV	s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor, f	$_{HV}$ =1/ (1+ P_T (E_T -1)+ P_R (E_R -1))		0.994		
Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})		608		
v _p * highest directional split propo			353		
Free-Flow Sp	eed from Field Measurement		Estimated Free-Flow Speed		
Field Managurad appead S	mi/h	Base free-flow speed, BFF	S _{FM}	45.0 mi/h	
Field Measured speed, S _{FM}		Adj. for lane width and sho	ulder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V _f	veh/h	Adj. for access points, f _A (I	Exhibit 20-6)	2.5 mi/h	
Free-flow speed, FFS FFS=S _{FM} +	$0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FS		41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>mi</i>	/h) (Exhibit 20-11)		3.9		
Average travel speed, ATS (mi/h)	ATS=FFS-0.00776v _p -f _{np}		32.6		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exhi	pit 20-8)		1.00		
Passenger-car equivalents for trud	cks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for RV	s, E _R (Exhibit 20-10)		1.0		
Heavy-vehicle adjustment factor, f	_{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.997		
Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})		606		
v _p * highest directional split propo	rtion ² (pc/h)		351		
Base percent time-spent-following	, BPTSF(%)=100(1-e ^{-0.000879v} p)		41.3		
Adj. for directional distribution and	no-passing zone, f _{d/hp} (%)(Exh. 20-12)		20.5		
Percent time-spent-following, PTS	F(%)=BPTSF+f _{d/np}		61.8		
Level of Service and Other Perf					
Level of service, LOS (Exhibit 20-			C		
/olume to capacity ratio, v/c=V _p / 3			0.19		
Peak 15-min veh-miles of travel, \	<u> </u>		151		
Peak-hour vehicle-miles of travel,			544		
Peak 15-min total travel time, TT ₁	₅ (veh-h)= VMT ₁₅ /ATS		4.6		
Notes					

Generated: 4/20/2011 11:13 AM

General Information	TWO-WAY TWO-LANE	Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To	North of I-40		
Analysis Time Period	04/18/2011 PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2034		
Project Description: Existing Co		i many oto 1 com			
nput Data					
		l I	Class I highway		
		4			
	Shoulder width	-	Ferrain		
	Lane width		Directional split 61 / 39		
	Lane width		Peak-hour factor, PHF 0.90		
	Shoulder width	1	Io-passing zone 100 % Trucks and Buses , P _T 10 %		
Segment	length, L _t mi	5024	•		
Segment	rengal, 4 III	. %	6 Recreational vehicles, P _R 0%		
		A	access points/ mi 10		
Verage Travel Speed		<u>'</u>			
Grade adjustment factor, f _G (Exh	ibit 20-7)		1.00		
Passenger-car equivalents for tru	icks, E _T (Exhibit 20-9)		1.1		
Passenger-car equivalents for R\	/s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor,	$f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$		0.990		
Fwo-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			1507		
/p * highest directional split propo	ortion ² (pc/h)		919		
Free-Flow S	peed from Field Measurement		Estimated Free-Flow Speed		
Gold Maggurad appead C	mi/l	Base free-flow speed, BFF	FS _{FM} 45.0 mi/h		
Field Measured speed, S _{FM}		Adj. for lane width and sho	oulder width ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh/	/h Adj. for access points, f _A (I			
Free-flow speed, FFS FFS=S _{FM}	$+0.00776(V_f/f_{HV})$ mi/l	h Free-flow speed, FFS (FS			
Adj. for no-passing zones, f_{np} (r	<i>ni/h</i>) (Exhibit 20-11)		1.6		
Average travel speed, ATS (mi/h			27.9		
Percent Time-Spent-Following	h uh	<u> </u>			
Grade Adjustment factor, f _G (Exh	ibit 20-8)		1.00		
Passenger-car equivalents for tru	1.1		1.0		
Passenger-car equivalents for R\			1.0		
Heavy-vehicle adjustment factor,			1.000		
Γwo-way flow rate ¹ , ν _p (pc/h)=V/			1492		
v _p * highest directional split propo			910		
	g, BPTSF(%)=100(1-e ^{-0.000879v} p)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	73.1		
	d no-passing zone, f _{d/hp} (%)(Exh. 20-12)	7.5		
Percent time-spent-following, PTS	**		80.6		
Level of Service and Other Per Level of service, LOS (Exhibit 20-	-3 for Class I or 20-4 for Class II)		D		
Volume to capacity ratio, v/c=V _p / 3,200			0.47		
	VMT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		373		
Peak-hour vehicle-miles of travel			1343		
Peak 15-min total travel time, TT.			13.4		
Notes	15' '0	<u> </u>			
	analysis-the LOS is F.				

	WAY SEGMENT WORKSHEET	
General Information Analyst SKB	Site Information Highway SR 222	
Agency or Company TDOT/TranSystems Date Performed 04/18/2011	From/To I-40 to Pilot Dwy. Jurisdiction Fayette County	
Analysis Time Period PM Peak Hour Project Description: Existing Conditions (No Build)	Analysis Year 2034	
Input Data		
Shoulder widthft	Class I highway Class II Terrain Level Ro Two-way hourly volume 8150 Directional split 5374	olling veh/h
Lane widthtt Shoulder widthtt Segment length, L _t mi	Peak-hour factor, PHF 0.90 No-passing zone 100 % Trucks and Buses , P _T 48 % % Recreational vehicles, P _R 0%)) ⁄6
	Access points/ mi 10)
Average Travel Speed	<u> </u>	
Grade adjustment factor, f _G (Exhibit 20-7)	1.00	
Passenger-car equivalents for trucks, E _T (Exhibit 20-9)	1.2	
Passenger-car equivalents for RVs, E _R (Exhibit 20-9)	1.0	
Heavy-vehicle adjustment factor, $f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$	0.912	
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})	992	
v _p * highest directional split proportion ² (pc/h)	526	
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Field Measured speed, S _{FM} mi/h Observed volume, V. veh/h	Base free-flow speed, BFFS _{FM} Adj. for lane width and shoulder width ³ , f _{LS} (Exhibit 20-5)	45.0 mi/h 1.3 mi/h
	Adj. for access points, f _A (Exhibit 20-6)	2.5 mi/h
Free-flow speed, FFS FFS= S_{FM} +0.00776(V_{f} / f_{HV}) mi/h	Free-flow speed, FFS (FSS=BFFS- f_{LS} - f_A)	41.2 mi/h
Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)	2.6	
Average travel speed, ATS (<i>mi/h</i>) ATS=FFS-0.00776v _p -f _{np}	30.9	
Percent Time-Spent-Following	T	
Grade Adjustment factor, f _G (Exhibit 20-8)	1.00	
Passenger-car equivalents for trucks, E _T (Exhibit 20-10)	1.1	
Passenger-car equivalents for RVs, E _R (Exhibit 20-10)	1.0	
Heavy-vehicle adjustment factor, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))	0.954	
Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})	949	
v _p * highest directional split proportion ² (pc/h)	503	
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)	56.6	
Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12)	13.3	
Percent time-spent-following, PTSF(%)=BPTSF+f d/np	69.9	
Level of Service and Other Performance Measures Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	С	
Volume to capacity ratio, v/c=V _p / 3,200	0.31	
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF)	226	
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- <i>mi</i>)=V*L _t	815	
Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS	7.3	
Notes		
 If Vp >= 3,200 pc/h, terminate analysis-the LOS is F. If highest directional split Vp>= 1,700 pc/h, terminated anlysis-the LOS is F. 		

Generated: 4/20/2011 11:14 AM

General Information	TWO-WAY TWO-LANE	Site Information			
Analyst	SKB	Highway	SR 222		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To Jurisdiction	South of Pilot Dwy. Fayette County		
Analysis Time Period	PM Peak Hour	Analysis Year	2034		
Project Description: Existing Co	nditions (No Build)				
nput Data					
			Class I highway Class II highway		
	1 Shoulder width		errain Level Rolling		
•	Lane width	tt Tv	wo-way hourly volume 500 veh/h		
	Lane width		irectional split 63 / 37 eak-hour factor, PHF 0.90		
	\$\ Shoulder width	_ <u>tt</u>	o-passing zone 100		
+	V	Show North Arrow %	6 Trucks and Buses , P _T 3 %		
Segment	t length, L _t mi	%	Recreational vehicles, P _R 0%		
		Ac	ccess points/ mi 10		
Average Travel Speed					
Grade adjustment factor, f _G (Exh	ibit 20-7)		1.00		
Passenger-car equivalents for tru	ucks, E _T (Exhibit 20-9)		1.7		
Passenger-car equivalents for R\	Vs, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor,	$f_{HV}=1/(1+P_T(E_T-1)+P_R(E_R-1))$		0.979		
wo-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			567		
v _p * highest directional split propo	p * highest directional split proportion ² (pc/h)		357		
Free-Flow S	Speed from Field Measurement		Estimated Free-Flow Speed		
Field Measured speed S	mi/h	Base free-flow speed, BFFS	S _{FM} 45.0 mi/h		
Field Measured speed, S _{FM}		Adj. for lane width and shou	ulder width ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh/t	Adj. for access points, f _Δ (E	Exhibit 20-6) 2.5 <i>mi/h</i>		
Free-flow speed, FFS FFS=S _{FM}	$+0.00776(V_{f}/f_{HV})$ mi/h	Free-flow speed, FFS (FSS			
Adj. for no-passing zones, f _{np} (<i>m</i>	ni/h) (Exhibit 20-11)		4.0		
Average travel speed, ATS (mi/h	n) ATS=FFS-0.00776v _p -f _{np}		32.8		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exh	nibit 20-8)		1.00		
Passenger-car equivalents for tru			1.1		
Passenger-car equivalents for R\	1.1		1.0		
Heavy-vehicle adjustment factor,	•		0.997		
Two-way flow rate ¹ , v _p (pc/h)=V/			557		
/p * highest directional split propo	-		351		
•	g, BPTSF(%)=100(1-e ^{-0.000879v} p)		38.7		
Adj. for directional distribution an	d no-passing zone, f _{d/hp} (%)(Exh. 20-12)		21.1		
Percent time-spent-following, PT	SF(%)=BPTSF+f _{d/np}		59.8		
Level of Service and Other Per					
·	-3 for Class I or 20-4 for Class II)		C		
/olume to capacity ratio, v/c=V _p /			0.18		
	VMT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		139		
Peak-hour vehicle-miles of travel			500		
Peak 15-min total travel time, TT. Votes	₁₅ (veh-h)= VMT ₁₅ /ATS		4.2		
V U(で3					

General Information		Site Information			
Analyst	SKB	Highway	Dancyville Road		
Agency or Company	TDOT/TranSystems	From/To	North of I-40		
Date Performed Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Co		ranaryolo roan	2011		
Input Data					
		Class I	highway Class II highway		
+		-4	Level Rolling		
	\$\$ Shoulder width	tt Terrain Two-way ho	-		
	Lane width	Directional s	split 56 / 44		
-	Lane width Shoulder width	Peak-hour fa No-passing			
	I Shoulder width ft _		nd Buses , P _T 2 %		
Segmen	t length, L _t mi	500000000000000000000000000000000000000	, I		
1	5		nal vehicles, P _R 0%		
		Access poin	ts/ <i>mi</i> 10		
Average Travel Speed					
Grade adjustment factor, f _G (Exh			1.00		
Passenger-car equivalents for tru	•		1.7		
Passenger-car equivalents for R			1.0		
	$f_{HV} = 1/(1 + P_T(E_{T}-1) + P_R(E_{R}-1))$		0.986		
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})		224		
v _p * highest directional split proportion ² (pc/h)			125		
Free-Flow Speed from Field Measurement		Estimate	Estimated Free-Flow Speed		
Field Measured speed, S _{FM} mi/h		Base free-flow speed, BFFS _{FM}	45.0 mi/h		
Observed volume, V _f	veh/h	Adj. for lane width and shoulder width	n ³ , f _{LS} (Exhibit 20-5) 1.3 mi/h		
'		Adj. for access points, f _A (Exhibit 20-6	6) 2.5 mi/h		
Free-flow speed, FFS FFS=S _{FN}	$_{\rm H}+0.00776(V_{\rm f}/f_{\rm HV})$ mi/h	Free-flow speed, FFS (FSS=BFFS-f _L	_S ^{-f} A) 41.2 mi/h		
Adj. for no-passing zones, f _{np} (<i>r</i>	ni/h) (Exhibit 20-11)		3.6		
Average travel speed, ATS (mi/l			35.8		
Percent Time-Spent-Following	, ,				
Grade Adjustment factor, f _G (Exh	nibit 20-8)		1.00		
Passenger-car equivalents for tru	ucks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for R	Vs, E _R (Exhibit 20-10)		1.0		
	, f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.998		
Two-way flow rate ¹ , v _p (pc/h)=V/			222		
v _p * highest directional split prop			124		
'	ng, BPTSF(%)=100(1-e ^{-0.000879v} p)		17.7		
	nd no-passing zone, f _{d/hp} (%)(Exh. 20-12)		23.0		
Percent time-spent-following, PT	· · · · · · · · · · · · · · · · · · ·		40.7		
Level of Service and Other Per	*				
	1-3 for Class I or 20-4 for Class II)		В		
Volume to capacity ratio, v/c=V _p /	7 3,200		0.07		
Peak 15-min veh-miles of travel,	VMT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		55		
Peak-hour vehicle-miles of trave	I, VMT ₆₀ (veh- <i>mi</i>)=V*L _t		199		
Peak 15-min total travel time, TT	₁₅ (veh-h)= VMT ₁₅ /ATS		1.5		
Notes					
1. If Vp >= 3,200 pc/h, terminate	analysis-the LOS is F.				

General Information		Site Information			
Analyst	SKB	Highway	Dancyville Road		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To	South of I-40		
Analysis Time Period	04/18/2011 AM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Con-		, manyoto i can			
nput Data					
		Г	Class I highway Class II highway		
		4 _			
	Shoulder width		Ferrain Level Rolling wo-way hourly volume 206 veh/h		
-	Lane width		irectional split 250 Verim		
	Lane width		eak-hour factor, PHF 0.90		
	Shoulder width		o-passing zone 100		
Segment I	ength, L _t mi	5024	% Trucks and Buses , P _T 2 %		
Segment	engui, L	%	Recreational vehicles, P _R 0%		
		A	ccess points/ mi 10		
Average Travel Speed		•			
Grade adjustment factor, f _G (Exhib	oit 20-7)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-9)		1.7		
Passenger-car equivalents for RVs	s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor, f	$_{HV}$ =1/ (1+ $P_{T}(E_{T}$ -1)+ $P_{R}(E_{R}$ -1))		0.986		
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			232		
$v_{ m p}^{-*}$ highest directional split propor	tion ² (pc/h)		151		
Free-Flow Sp	eed from Field Measurement		Estimated Free-Flow Speed		
Field Measured appeal C	mi/h	Base free-flow speed, BFF	S _{FM} 45.0 mi/h		
Field Measured speed, S _{FM}		Adj. for lane width and sho	ulder width ³ , f _{IS} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh/l	Adj. for access points, f _A (E			
Free-flow speed, FFS FFS=S _{FM} +6	$0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FS			
Adj. for no-passing zones, f _{np} (<i>mi/</i>	/b) (Exhibit 20-11)	Tree now speed, 110 (10)	3.7		
Average travel speed, ATS (<i>mi/h</i>)			35.7		
Percent Time-Spent-Following	7.1.6_1.1.6_0.0077.6vp				
	:: 20 a)	T	1.00		
Grade Adjustment factor, f _G (Exhib	DIT 20-8)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for RVs	s, E _R (Exhibit 20-10)		1.0		
Heavy-vehicle adjustment factor, f	$_{HV}$ =1/(1+ $P_{T}(E_{T}$ -1)+ $P_{R}(E_{R}$ -1))		0.998		
Two-way flow rate ¹ , v_p (pc/h)=V/ (F	PHF * f _G * f _{HV})		229		
v _p * highest directional split propor	tion ² (pc/h)		149		
Base percent time-spent-following,	, BPTSF(%)=100(1-e ^{-0.000879v} p)		18.2		
Adj. for directional distribution and	no-passing zone, f _{d/hp} (%)(Exh. 20-12)		24.3		
Percent time-spent-following, PTS	**		42.6		
Level of Service and Other Perfo			В		
evel of service, LOS (Exhibit 20-3	·		0.07		
/olume to capacity ratio, v/c=V _p /3					
Peak 15-min veh-miles of travel, V			57		
Peak-hour vehicle-miles of travel,			206		
Peak 15-min total travel time, TT ₁₅ Votes	₅ (veh-h)= VMT ₁₅ /ATS		1.6		
voies					

General Information		Site Information			
Analyst	SKB	Highway	Dancyville Road		
Agency or Company	TDOT/TranSystems	From/To	North of I-40		
Date Performed Analysis Time Period	04/18/2011 PM Peak Hour	Jurisdiction Analysis Year	Fayette County 2014		
Project Description: Existing Con-	ditions	,			
nput Data					
		Class	s I highway 🔽 Class II highway		
<u> </u>	1 Shoulder width	- 4	✓ Level ☐ Rolling		
			hourly volume 169 veh/h		
		Directiona			
		tt No-passin	•		
		Show North Arrow % Trucks	and Buses , P _T 2 %		
Segment I	ength, L _t mi	% Recrea	tional vehicles, P _R 0%		
		Access po	.,		
Average Travel Speed		<u>'</u>			
Grade adjustment factor, f _G (Exhib	it 20-7)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-9)		1.7		
Passenger-car equivalents for RVs	·		1.0		
Heavy-vehicle adjustment factor, f			0.986		
Two-way flow rate ¹ , v _p (pc/h)=V/ (F	PHF * f _G * f _{HV})		190		
/p * highest directional split propor	tion ² (pc/h)		106		
Free-Flow Sp	eed from Field Measurement	Estima	ated Free-Flow Speed		
		Base free-flow speed, BFFS _{FM}	45.0 mi/h		
Field Measured speed, S _{FM}	mi/h	Adj. for lane width and shoulder wid	dth ³ , f _{I,S} (Exhibit 20-5) 1.3 mi/h		
Observed volume, V _f	veh/h	Adj. for access points, f _A (Exhibit 20			
Free-flow speed, FFS FFS=S _{FM} +0	$0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FSS=BFFS			
Adj. for no-passing zones, f _{np} (<i>mi/</i>	(h) (Exhibit 20-11)		3.3		
Average travel speed, ATS (mi/h)	ATS=FFS-0.00776v _p -f _{np}		36.4		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exhib	it 20-8)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for RVs	s, E _R (Exhibit 20-10)		1.0		
Heavy-vehicle adjustment factor, f	$_{HV}$ =1/(1+ $P_{T}(E_{T}$ -1)+ $P_{R}(E_{R}$ -1))		0.998		
Γwo-way flow rate ¹ , ν _p (pc/h)=V/ (F	PHF * f _G * f _{HV})		188		
$v_{ m p}^{*}$ highest directional split propor	tion ² (pc/h)		105		
Base percent time-spent-following,	BPTSF(%)=100(1-e ^{-0.000879v} p)		15.2		
Adj. for directional distribution and	no-passing zone, f _{d/hp} (%)(Exh. 20-12)		22.9		
Percent time-spent-following, PTS	* 1		38.2		
Level of Service and Other Performance Level of Service, LOS (Exhibit 20-3)			A		
/olume to capacity ratio, v/c=V _p / 3			0.06		
Peak 15-min veh-miles of travel, V			47		
			169		
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t Peak 15-min total travel time, TT ₁₅ (veh-h)= VMT ₁₅ /ATS			1.3		
eak 15-min total travel time 11					

Generated: 4/20/2011 11:01 AM

General Information		Site Information			
Analyst	SKB	Highway	Dancyville Road		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To Jurisdiction	South of I-40 Fayette County		
Analysis Time Period	PM Peak Hour	Analysis Year	2014		
Project Description: Existing Co.	nditions				
nput Data		1			
			Class I highway Class II Terrain Level Ro Two-way hourly volume 212 v		
			Directional split 61 / 3		
			Peak-hour factor, PHF 0.90 No-passing zone 100		
		Show North Arrow	% Trucks and Buses , P _T 2 %		
Segment	length, L _t mi		% Recreational vehicles, P _R 0%		
			Access points/ mi 10)	
Average Travel Speed			<u> </u>		
Grade adjustment factor, f _G (Exhi	bit 20-7)		1.00		
Passenger-car equivalents for tru			1.7		
Passenger-car equivalents for RV	<u>·</u>		1.0		
Heavy-vehicle adjustment factor,			0.986		
Two-way flow rate ¹ , v_p (pc/h)=V/			239		
v _p * highest directional split propo			146		
	peed from Field Measurement	Estimated Free-Flow Speed			
		Base free-flow speed, BF	FS _{EM}	45.0 mi/h	
Field Measured speed, S _{FM}	mi/h		oulder width ³ , f _{IS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V _f	veh/h	Adj. for access points, f _A	20	2.5 mi/h	
Free-flow speed, FFS FFS=S _{FM} -	$+0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FS		41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>m</i>	<i>i/h</i>) (Exhibit 20-11)		3.7		
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v _p -f _{np}		35.7		
Percent Time-Spent-Following		,			
Grade Adjustment factor, f _G (Exh	ibit 20-8)		1.00		
Passenger-car equivalents for tru	cks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for RV	's, E _R (Exhibit 20-10)		1.0		
Heavy-vehicle adjustment factor,	$f_{HV} = 1/(1 + P_T(E_T-1) + P_R(E_R-1))$		0.998		
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})		236		
v _p * highest directional split propo	rtion ² (pc/h)		144		
Base percent time-spent-following	g, BPTSF(%)=100(1-e ^{-0.000879v} p)		18.7		
Adj. for directional distribution and	d no-passing zone, f _{d/hp} (%)(Exh. 20-12)		23.6		
Percent time-spent-following, PTS	* 1		42.3		
Level of Service and Other Per					
evel of service, LOS (Exhibit 20-			B		
/olume to capacity ratio, v/c=V _p /			0.07		
Peak 15-min veh-miles of travel, '			59		
Peak-hour vehicle-miles of travel,			212		
Peak 15-min total travel time, TT ₁	₅ (veh-h)= VMT ₁₅ /ATS		1.7		
Votes					

Generated: 4/20/2011 11:02 AM

General Information		Site Information			
Analyst	SKB	Highway	Dancyville Road		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To Jurisdiction	North of I-40 Fayette County		
Analysis Time Period	AM Peak Hour	Analysis Year	2034		
Project Description: Existing Co.	nditions				
nput Data		1			
9		91	Class I highway Class II	highway	
	🕽 Shoulder widtht		errain 🔽 Level 🔲 Ro	-	
-	Lane widtht		vo-way hourly volume 250 rectional split 54 / 4	veh/h 46	
		Pe	ak-hour factor, PHF 0.90)	
	Shoulder widthf	- 1 I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	p-passing zone 100 Trucks and Buses , P _T 2 %		
Segment	length, L _t mi		· 1		
-			, K		
Average Travel Speed		AC	cess points/ mi 10)	
Grade adjustment factor, f _G (Exhi	bit 20-7)		1.00		
Passenger-car equivalents for tru			1.7		
			1.0		
Passenger-car equivalents for R\ Heavy-vehicle adjustment factor,			0.986		
Fwo-way flow rate ¹ , v_p (pc/h)=V/			282		
v_p * highest directional split propo			152		
	peed from Field Measurement		Estimated Free-Flow Speed		
		Base free-flow speed, BFFS	·	45.0 mi/h	
Field Measured speed, S _{FM}	mi/h		rilder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V _f	veh/h	Adj. for access points, f _A (E.	20	2.5 mi/h	
Free-flow speed, FFS FFS=S _{FM}	$+0.00776(V_f/f_{HV})$ mi/h	Free-flow speed, FFS (FSS		41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>m</i>	<i>i/h</i>) (Exhibit 20-11)		3.9		
Average travel speed, ATS (mi/h) ATS=FFS-0.00776v _p -f _{np}		35.1		
Percent Time-Spent-Following		•			
Grade Adjustment factor, f _G (Exh	ibit 20-8)		1.00		
Passenger-car equivalents for tru	cks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for R\	's, E _R (Exhibit 20-10)		1.0		
Heavy-vehicle adjustment factor,	f _{HV} =1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.998		
Two-way flow rate ¹ , v _p (pc/h)=V/	(PHF * f _G * f _{HV})		278		
, * highest directional split propo	rtion ² (pc/h)		150		
Base percent time-spent-following	g, BPTSF(%)=100(1-e ^{-0.000879v} p)		21.7		
Adj. for directional distribution and	d no-passing zone, f _{d/hp} (%)(Exh. 20-12)		23.0		
Percent time-spent-following, PTS	SF(%)=BPTSF+f _{d/np}		44.7		
evel of Service and Other Per					
evel of service, LOS (Exhibit 20-			В		
/olume to capacity ratio, v/c=V _p /	3,200		0.09		
Peak 15-min veh-miles of travel,	/MT ₁₅ (veh- <i>mi</i>)= 0.25L _t (V/PHF)		69		
Peak-hour vehicle-miles of travel,	VMT ₆₀ (veh- <i>mi</i>)=V*L _t		250		
Peak 15-min total travel time, TT,	₅ (veh-h)= VMT ₁₅ /ATS		2.0		
Votes					

Generated: 4/20/2011 11:03 AM

General Information		HIGHWAY SEGMENT WOR			
Analyst	SKB	Highway	Dancyville Road		
Agency or Company Date Performed	TDOT/TranSystems 04/18/2011	From/To Jurisdiction	South of I-40 Fayette County		
Analysis Time Period	AM Peak Hour	Analysis Year	2034		
Project Description: Existing Con	ditions				
nput Data					
L			ss I highway Class II		
	\$\frac{1}{2} Shoulder width	tt Terrain	Level Ro	olling veh/h	
		Direction	al split 65/3	35	
-		tt Peak-nou No-passi	or factor, PHF 0.90 ng zone 100		
		Show North Arrow % Trucks	s and Buses , P _T 2 %		
Segment	ength, L _t mi	- seed to be a seed of the see	ational vehicles, P _R 0%		
		Access p)	
verage Travel Speed					
Grade adjustment factor, f _G (Exhib	oit 20-7)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-9)		1.7		
Passenger-car equivalents for RV	s, E _R (Exhibit 20-9)		1.0		
Heavy-vehicle adjustment factor, f	HV=1/ (1+ P _T (E _T -1)+P _R (E _R -1))		0.986		
Two-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})		296		
v _p * highest directional split propor			192		
Free-Flow Sp	eed from Field Measurement	Estim	ated Free-Flow Speed		
Field Measured speed, S _{FM}	mi/h	Base free-flow speed, BFFS _{FM}		45.0 mi/h	
Observed volume, V _f	veh/h	Adj. for lane width and shoulder wi	dth ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Free-flow speed, FFS FFS=S _{FM} +		Adj. for access points, f _A (Exhibit 2	20-6)	2.5 mi/h	
Tee new speed, 11 o 11 o-o _{FM} 1	0.50776(v# 1HV)	Free-flow speed, FFS (FSS=BFFS	S-f _{LS} -f _A)	41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>mi</i>	/h) (Exhibit 20-11)		4.0		
Average travel speed, ATS (mi/h)	ATS=FFS-0.00776v _p -f _{np}		34.9		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exhit	pit 20-8)		1.00		
Passenger-car equivalents for truc	ks, E _T (Exhibit 20-10)		1.1		
Passenger-car equivalents for RV	s, E _R (Exhibit 20-10)		1.0		
Heavy-vehicle adjustment factor, f	$_{HV}$ =1/(1+ $P_{T}(E_{T}$ -1)+ $P_{R}(E_{R}$ -1))		0.998		
Fwo-way flow rate ¹ , v _p (pc/h)=V/ (PHF * f _G * f _{HV})		293		
'p * highest directional split propor			190		
Base percent time-spent-following			22.7		
Adj. for directional distribution and	no-passing zone, f _{d/hp} (%)(Exh. 20-12)		23.7		
Percent time-spent-following, PTS	*		46.4		
Level of Service and Other Performance Level of service, LOS (Exhibit 20-3)			В		
/olume to capacity ratio, v/c=V _p /3			0.09		
Peak 15-min veh-miles of travel, V			73		
Peak-hour vehicle-miles of travel,			263		
Peak 15-min total travel time, TT ₁₈			2.1		
	יי, וס" -				

Generated: 4/20/2011 11:04 AM

	TWO-WAY TWO-LANE				
General Information	01/0	Site Information			
Analyst Agency or Company	SKB TDOT/TranSystems	Highway From/To	Dancyville Road North of I-40		
Date Performed	04/18/2011	Jurisdiction	Fayette County		
Analysis Time Period Project Description: Existing Cond	PM Peak Hour	Analysis Year	2034		
Input Data					
			Class I highway Class I	Lhighway	
L		-4 _			
	\$\frac{1}{2}\$ Shoulder width	tt Terr Two-		veh/h	
	Lane width	Direct	ctional split 54/	46	
	\$ Shoulder width		k-hour factor, PHF 0.9 oassing zone 10		
		Show North Arrow % T	rucks and Buses , P _T 2 %	b	
Segment le	ngth, L _t mi	% R	ecreational vehicles, P _R 0%)	
		Acce	ess points/ mi 1	0	
Average Travel Speed					
Grade adjustment factor, f _G (Exhibit 20-7)			1.00		
Passenger-car equivalents for trucks, E _T (Exhibit 20-9)			1.7		
Passenger-car equivalents for RVs, E _R (Exhibit 20-9)			1.0		
Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ P_T (E_T -1)+ P_R (E_R -1))			0.986		
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			237		
v _p * highest directional split proportion ² (pc/h)			128		
Free-Flow Spe	ed from Field Measurement	Е	Stimated Free-Flow Speed		
Field Massurad apood S	mi/h	Base free-flow speed, BFFS _F	М	45.0 mi/h	
Field Measured speed, S _{FM}		Adj. for lane width and should	er width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h	
Observed volume, V_f veh/h Free-flow speed, FFS FFS= S_{FM} +0.00776(V_f / f_{HV}) mi/h		Adj. for access points, f _A (Exh	nibit 20-6)	2.5 mi/h	
		Free-flow speed, FFS (FSS=	BFFS-f _{LS} -f _A)	41.2 mi/h	
Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)			3.7		
Average travel speed, ATS (mi/h) A	ATS=FFS-0.00776v _p -f _{np}		35.7		
Percent Time-Spent-Following					
Grade Adjustment factor, f _G (Exhibit 20-8)			1.00		
Passenger-car equivalents for trucks, E _T (Exhibit 20-10)			1.1		
Passenger-car equivalents for RVs, E _R (Exhibit 20-10)			1.0		
Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ P_T (E_T -1)+ P_R (E_R -1))			0.998		
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			234		
v _p * highest directional split proportion ² (pc/h)			126		
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)			18.6		
Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12)			22.8		
Percent time-spent-following, PTSF(%)=BPTSF+f _{d/np}			41.4		
Level of Service LOS (Exhibit 20-3)		<u> </u>	В		
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) Volume to capacity ratio, v/c=V _p / 3,200			0.07		
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF)			58		
Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t			210		
Peak 15-min total travel time, TT ₁₅ (1.6		
	15//10				
Notes					

Generated: 4/20/2011 11:05 AM

	WO-WAY TWO-LANE					
General Information	CVD	Site Information	D			
Analyst Agency or Company	SKB TDOT/TranSystems	Highway From/To	Dancyville Road South of I-40			
Date Performed	04/18/2011	Jurisdiction	Fayette County			
Analysis Time Period Project Description: Existing Condi	PM Peak Hour	Analysis Year	2034			
Input Data						
			Class I highway Class I	Lhighwoy		
L4			_			
	\$\ Shoulder width Lane width			veh/h		
	Lane width	Dir	rectional split 60 /	40		
	\$ Shoulder width		ak-hour factor, PHF 0.9 -passing zone 10			
		Show North Arrow %	Trucks and Buses , P _T 2 %	b		
Segment le	ngth, L _t mi	%	Recreational vehicles, P _R 0%)		
		Ac	cess points/ mi 1	0		
Average Travel Speed						
Grade adjustment factor, f _G (Exhibit 20-7)			1.00			
Passenger-car equivalents for trucks, E _T (Exhibit 20-9)			1.7			
Passenger-car equivalents for RVs, E _R (Exhibit 20-9)			1.0			
Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ P_T (E_T -1)+ P_R (E_R -1))			0.986			
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			308			
v _p * highest directional split proportion ² (pc/h)			185			
Free-Flow Spee	ed from Field Measurement		Estimated Free-Flow Speed			
Field Maggurad appeal C	mi/h	Base free-flow speed, BFFS	FM	45.0 mi/h		
Field Measured speed, S _{FM}		Adj. for lane width and shou	lder width ³ , f _{LS} (Exhibit 20-5)	1.3 mi/h		
Observed volume, V_f veh/h Free-flow speed, FFS FFS=S _{FM} +0.00776(V_f/f_{HV}) mi/h		Adj. for access points, f _A (Ex	xhibit 20-6)	2.5 mi/h		
		Free-flow speed, FFS (FSS	S=BFFS-f _{LS} -f _A)	41.2 mi/h		
Adj. for no-passing zones, f _{np} (<i>mi/h</i>) (Exhibit 20-11)			4.0			
Average travel speed, ATS (mi/h) A	TS=FFS-0.00776v _p -f _{np}		34.8			
Percent Time-Spent-Following		1				
Grade Adjustment factor, f _G (Exhibit 20-8)			1.00			
Passenger-car equivalents for trucks, E _T (Exhibit 20-10)			1.1			
Passenger-car equivalents for RVs, E _R (Exhibit 20-10)			1.0			
Heavy-vehicle adjustment factor, f_{HV} =1/ (1+ P_T (E_T -1)+ P_R (E_R -1))			0.998			
Two-way flow rate ¹ , v_p (pc/h)=V/ (PHF * f_G * f_{HV})			304			
v _p * highest directional split proportion	on ² (pc/h)		182			
Base percent time-spent-following, BPTSF(%)=100(1-e ^{-0.000879v} p)			23.4			
Adj. for directional distribution and no-passing zone, f _{d/hp} (%)(Exh. 20-12)			22.9			
Percent time-spent-following, PTSF(%)=BPTSF+f d/np			46.4			
Level of Service and Other Perfor			В			
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II) Volume to capacity ratio, v/c=V _p / 3,200			0.10			
·			76			
Peak 15-min veh-miles of travel, VMT ₁₅ (veh- mi)= 0.25L _t (V/PHF) Peak-hour vehicle-miles of travel, VMT ₆₀ (veh- mi)=V*L _t			273			
			2.2			
Peak 15-min total travel time, TT ₁₅ (v	7611-11)= VIVI 1 ₁₅ /A13		۷.۷			
Notes						

Generated: 4/20/2011 11:05 AM

Multilane Segments Highway Capacity Software Computer Printouts

Unsignalized Intersections
Highway Capacity Software
Computer Printouts

	TW	O-WAY STOP	CONTR	OL S	UMN	IARY			
General Informatio	n		Site I	nforn	natio	n			
Analyst	SKB		Interse	ection			SR 59 @	1-40 EB F	Ramps
Agency/Co.	TDOT/Tra	anSystems	Jurisdi	ction			Fayette C		•
Date Performed	04/18/20 ⁻		Analys	sis Yea	ar		2014		
Analysis Time Period	AM Peak	Period							
Project Description E.		าร							
East/West Street: I-40						:: SR 59			
Intersection Orientation:	North-South		Study I	Period	(hrs):	0.25			
Vehicle Volumes a	nd Adjustme	ents							
Major Street		Northbound					Southboo	ınd	
Movement	1	2	3			4	5		6
	L	Т	R			L	Т		R
Volume (veh/h)		154	101			100	68		
Peak-Hour Factor, PHF	0.90	0.90	0.90)		0.90	0.90		0.90
Hourly Flow Rate, HFR (veh/h)	0	171	112			111	75		0
Percent Heavy Vehicles	0					3			
Median Type				Undi	vided				
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration			TR			LT			
Upstream Signal		0					0		
Minor Street		Eastbound					Westbou	ınd	
Movement	7	8	9			10	11		12
	L	Т	R			L	Т		R
Volume (veh/h)	90		94						
Peak-Hour Factor, PHF	0.90	0.90	0.90)		0.90	0.90		0.90
Hourly Flow Rate, HFR (veh/h)	100	0	104			0	0		0
Percent Heavy Vehicles	3	0	3			0	0		0
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized		i	0						0
Lanes	0	0	0			0	0	$\neg \vdash$	0
Configuration		LR					1		
Delay, Queue Length,	and Level of Se	ervice	*				R		
Approach	Northbound	Southbound	,	Westb	ound		1	Eastbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration		LT	•	٣			 	LR	† ·-
v (veh/h)		111					1	204	†
C (m) (veh/h)		1274		 			1	638	+
v/c		0.09		 				0.32	+
95% queue length		0.09		 				1.38	+
									+
Control Delay (s/veh)		8.1		<u> </u>				13.3	-
LOS		Α		<u> </u>				В	
Approach Delay (s/veh)								13.3	
Approach LOS								В	

		TWC	-WAY STOP	CONTR	OL S	UMN	MARY					
General Information	n n			Site II	nform	natio	n					
Analyst	SKI	3		Interse	ction			SR 59 @	I-40 EB I	Ramps		
Agency/Co.	TD	OT/Tra	nSystems	Jurisdi	ction			Fayette (,		
Date Performed		18/201		Analys	is Yea	r		2014				
Analysis Time Period	PM	Peak I	Period									
Project Description Ex			S									
East/West Street: I-40							:: <i>SR 59</i>					
Intersection Orientation:	North-S	outh		Study F	Period	(hrs):	0.25					
Vehicle Volumes a	nd Adju	stme	nts									
Major Street			Northbound						und			
Movement		1	2	3			4			6		
		_	T	R			<u>L</u>			R		
Volume (veh/h)		20	100	79			77			0.00		
Peak-Hour Factor, PHF	0.9	90	0.90	0.90			0.90	0.90		0.90		
Hourly Flow Rate, HFR (veh/h)	()	111	87			85	107		0		
Percent Heavy Vehicles	C)					3					
Median Type					Undi	vided	1		T 97 0.90 0.90 107 1 0 Nestbound 11 T 0.90 0 0 0 N 0 0 N 0			
RT Channelized				0						0		
Lanes	()	1	0			0	1		0		
Configuration				TR			LT					
Upstream Signal			0					0				
Minor Street			Eastbound					Westbou	ınd			
Movement		7	8	9			10	11		12		
		L	Т	R			L	Т		R		
Volume (veh/h)	11			122								
Peak-Hour Factor, PHF	0.9	90	0.90	0.90			0.90	0.90		0.90		
Hourly Flow Rate, HFR (veh/h)	13	30	0	135			0	0		0		
Percent Heavy Vehicles	3	3	0	3			0	0		0		
Percent Grade (%)			0					0				
Flared Approach			N					N				
Storage			0					0				
RT Channelized				0						0		
Lanes	()	0	0			0	0		0		
Configuration			LR									
Delay, Queue Length, a	and Level	of Se	rvice									
Approach	Northbo	und	Southbound	1	Nestbo	ound			Eastboun	d		
Movement	1		4	7	8		9	10	11	12		
Lane Configuration			LT						LR			
v (veh/h)			85						265			
C (m) (veh/h)			1369						693			
v/c			0.06			T			0.38			
95% queue length		$\neg \uparrow$	0.20						1.80			
Control Delay (s/veh)		$\neg \uparrow$	7.8						13.4			
LOS		$\overline{}$	A					1	В	1		
Approach Delay (s/veh)		\dashv			<u> </u>				13.4	<u> </u>		
Approach LOS		- 							B			
Copyright © 2009 University of E										011 12:20 DM		

TW	O-WAY STOP	CONTR	OL SUMI	MARY				
1		Site I	nformation	on				
SKB		Interse	ction		SR 59 @) I-40 WB	Ramps	
TDOT/Tra	anSystems						,	
		Analys	is Year		2014			
AM Peak	Period							
	าร							
North-South		Study F	Period (hrs)): 0.25				
nd Adjustme								
<u> </u>					1	und		
				4			6	
		R		L			R	
		0.00		0.00	_		134	
0.90	0.90	0.90		0.90	0.90		0.90	
155	115	0		0	115		148	
3								
			Undivided	<u>d</u>				
1		_					0	
	1	0		0	1		0	
LT		ļ				TF		
					0			
	Eastbound	_				ınd		
7				10			12	
L	Т	R		L	T		R	
							62	
0.90	0.90	0.90		0.90	0.90		0.90	
0	0	0		71	0		68	
3	0	3		3	0	0		
	0				0			
	N				N			
	0	1			0			
1	<u> </u>	0	$\overline{}$		1		0	
0	0	0		0	0		0	
1	1	†		-	LR			
nd Level of Se	ervice							
	1	1	Nesthound	l		Easthoun		
						1	12	
	-	'		-	10	 ''	12	
	 			 	+	 	+	
				-	+	-	-	
							+	
0.41			0.98					
8.2			13.6					
Α			В					
	1				1			
			13.6					
	SKB	SKB	SKB	SKB TDOT/TranSystems O4/18/2011 Analysis Year Analysis Year	SKB TDOT/TranSystems Q4/18/2011 AM Peak Period Analysis Year Analy	SKB	Site Information	

	TV	VO-WAY STOP	CONTR	OL SI	JMI	MARY				
General Informatio	n		Site I	nform	atio	on				
Analyst	SKB		Interse	ection			SR 59 @	1-40 V	VB R	amps
Agency/Co.		ranSystems	Jurisdi					County		·
Date Performed	04/18/20		Analys	sis Year	r		2014			
Analysis Time Period		k Period								
Project Description Ex		ons								
East/West Street: I-40										
Intersection Orientation:			Study I	Period ((hrs)	: 0.25				
Vehicle Volumes a	<u>nd Adjustm</u>									
Major Street		Northbound	1		SR 59 @ I-40 Will Fayette County Tayette County Tayette County Tayette County Tayette Tayett					
Movement	1 1	2	3					\rightarrow		6
\/aluma (uah/h)	91	126	R	-		L		\rightarrow		R 86
Volume (veh/h) Peak-Hour Factor, PHF	0.90	0.90	0.90	, +		0.00		-+		0.90
Hourly Flow Rate, HFR		i		+				\dashv		
(veh/h)	101	140	0			0	91			95
Percent Heavy Vehicles	3					3	91 1 0 Westbound 11 T			
Median Type				Undiv	rided	1				
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration	LT									TR
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	8	9							12
	L	Т	R				Т			R
Volume (veh/h)			ļ							90
Peak-Hour Factor, PHF	0.90	0.90	0.90	<u> </u>		0.90	0.90	_	(0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0			102	0			100
Percent Heavy Vehicles	3	0	3			3	0			3
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			0	0			0
Configuration			1				LR			
Delay, Queue Length, a	and Level of S	Service								
Approach	Northbound	Southbound	1	Westbo	und			Eastbo	und	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	LT			LR						
v (veh/h)	101			202						
C (m) (veh/h)	1382			645	;					
v/c	0.07			0.31	1					
95% queue length	0.24			1.34						
Control Delay (s/veh)	7.8			13.1						
LOS	A	1		В						
Approach Delay (s/veh)		 		13.1	1					<u> </u>
Approach LOS				B						
Converight © 2009 University of F		_l		00 TM 1			Conor			

Site Information	
Agency/Co. TDOT/TranSystems Date Performed O4/18/2011 Analysis Time Period AM Peak Period Am Peak Period Am Peak Period Am Peak Period Am Peak Period Analysis Year 2034	
Date Performed	
Analysis Time Period	
Project Description	
East/West Street: I-40 EB Ramps North/South Street: SR 59 Intersection Orientation: North-South Study Period (hrs): 0.25	
North-South Study Period (hrs): 0.25	
Vehicle Volumes and Adjustments Northbound Southbound Major Street Northbound Southbound Movement 1 2 3 4 5 Volume (veh/h) L T R L T Volume (veh/h) 229 119 118 87 Peak-Hour Factor, PHF 0.90 0.90 0.90 0.90 Hourly Flow Rate, HFR (veh/h) 0 254 132 131 96 Hourly Flow Rate, HFR (veh/h) 0 3 Percent Heavy Vehicles 0 3 Median Type Undivided RT Channelized 0 1 0 1 Lanes 0 1 0 1 Configuration TR LT Undivided Westbound 0 0 0 Minor Street Eastbound Westbound Movement 7 8 9 10	
Major Street Northbound Southbound Movement 1 2 3 4 5 Volume (veh/h) L T R L T Volume (veh/h) 229 119 118 87 Peak-Hour Factor, PHF 0.90 0.90 0.90 0.90 Hourly Flow Rate, HFR (veh/h) 0 254 132 131 96 Hourly Flow Rate, HFR (veh/h) 0 3 Percent Heavy Vehicles 0 3 Median Type Undivided RT Channelized 0 1 0 1 Lanes 0 1 0 0 1 Configuration TR LT 0 0 Upstream Signal 0 0 0 0 Minor Street Eastbound Westbound Movement 7 8 9 10 11 L T <td></td>	
Movement 1 2 3 4 5 Volume (veh/h) L T R L T Volume (veh/h) 229 119 118 87 Peak-Hour Factor, PHF 0.90 0.90 0.90 0.90 Hourly Flow Rate, HFR (veh/h) 0 254 132 131 96 Hourly Flow Rate, HFR (veh/h) 0 3 Percent Heavy Vehicles 0 3 Median Type Undivided RT Channelized 0 0 1 Lanes 0 1 0 0 1 Configuration TR LT Undivided 0 0 0 0 Upstream Signal 0 0 0 0 0 0 0 Minor Street Eastbound Westbound 0 11 0 0 11 0 Volume (veh/h) 134 <td></td>	
L	_
Volume (veh/h) 229 119 118 87 Peak-Hour Factor, PHF 0.90 0.90 0.90 0.90 Hourly Flow Rate, HFR (veh/h) 0 254 132 131 96 Percent Heavy Vehicles 0 3 Median Type Undivided RT Channelized 0 1 0 0 1 Lanes 0 1 0 0 1 Configuration TR LT LT Upstream Signal 0 0 0 Minor Street Eastbound Westbound Movement 7 8 9 10 11 L T R L T T Volume (veh/h) 134 140 140 140	6
Peak-Hour Factor, PHF 0.90	R
Hourly Flow Rate, HFR (veh/h)	
(veh/h) 0 254 132 131 96 Percent Heavy Vehicles 0 3 Median Type Undivided RT Channelized 0 0 1 Lanes 0 1 0 0 1 Configuration TR LT LT Upstream Signal 0 0 0 0 Minor Street Eastbound Westbound Westbound Movement 7 8 9 10 11 1 L T R L T <td>0.90</td>	0.90
Median Type Undivided RT Channelized 0 0 1 Lanes 0 1 0 0 1 Configuration TR LT 0 0 0 0 Upstream Signal 0 </td <td>0</td>	0
RT Channelized 0 1 0 0 1 Lanes 0 1 0 0 1 Configuration TR LT LT Upstream Signal 0 0 0 Minor Street Eastbound Westbound Westbound Movement T 8 9 10 11 T L T R L T T Volume (veh/h) 134 140	
Lanes 0 1 0 0 1 Configuration TR LT LT Upstream Signal 0 0 0 Minor Street Eastbound Westbound Movement 7 8 9 10 11 L T R L T Volume (veh/h) 134 140 140	
Configuration TR LT Upstream Signal 0 0 Minor Street Eastbound Westbound Movement 7 8 9 10 11 L T R L T Volume (veh/h) 134 140 140	0
Upstream Signal 0 0 Minor Street Eastbound Westbound Movement 7 8 9 10 11 L T R L T Volume (veh/h) 134 140 140	0
Minor Street Eastbound Westbound Movement 7 8 9 10 11 L T R L T Volume (veh/h) 134 140 140	
Movement 7 8 9 10 11 L T R L T Volume (veh/h) 134 140 140	
L T R L T Volume (veh/h) 134 140	
Volume (veh/h) 134 140	12
	R
Peak-Hour Factor, PHF 0.90 0.90 0.90 0.90 0.90	
	0.90
Hourly Flow Rate, HFR (veh/h) 0 155 0	0
Percent Heavy Vehicles 3 0 3 0 0	0
Percent Grade (%) 0 0	
Flared Approach N N	
Storage 0 0	
RT Channelized 0	0
Lanes 0 0 0 0 0	0
Configuration LR	
Delay, Queue Length, and Level of Service	
Approach Northbound Southbound Westbound Eastbou	
Movement 1 4 7 8 9 10 11	
Lane Configuration LT LR	
v (veh/h) 131 303	
	_
C (m) (veh/h) 1167 538 v/c 0.11 0.56	
95% queue length 0.38 3.46	
' '	
LOS A C	
Approach Delay (s/veh) 20.0	0
Approach LOS Conviget © 2008 University of Florida, All Rights Reserved HCS TM Version 5.4 Generated: 4/20	0

		TW	O-WAY STOP	CONTR	OL S	UMN	JARY			
General Informatio	n			Site I	nforn	natio	on .			
Analyst	SŁ	KB		Interse	ection			SR 59 @	I-40 EB I	Ramps
Agency/Co.	TL	OOT/Tra	anSystems	Jurisdi	ction			Fayette C	County	
Date Performed		1/18/201		Analys	is Yea	ır		2034		
Analysis Time Period	PI	И Peak	Period							
Project Description Ex			S							
East/West Street: I-40							t: <i>SR 59</i>			
Intersection Orientation:				Study I	Period	(hrs)	: 0.25			
Vehicle Volumes a	<u>nd Adjı</u>	ustme								
Major Street			Northbound					Southbou	nd	
Movement		<u>1</u>	2	3			4	5		6
\/a aa (ab./b)	-	L	T	R 100			L	T 110		R
Volume (veh/h) Peak-Hour Factor, PHF		0.90	0.90	103 0.90			101 0.90	116 0.90		0.90
Hourly Flow Rate, HFR	+ -			1					_	
(veh/h)		0	165	114			112	128		0
Percent Heavy Vehicles		0					3			
Median Type			•	•	Undi	videa	l		•	
RT Channelized				0						0
Lanes		0	1	0			0	1		0
Configuration				TR			LT			
Upstream Signal			0					0		
Minor Street			Eastbound					Westbou	nd	
Movement		7	8	9			10	11		12
		L	Т	R			L	Т		R
Volume (veh/h)		174		181						
Peak-Hour Factor, PHF	C	0.90	0.90	0.90			0.90	0.90		0.90
Hourly Flow Rate, HFR (veh/h)	1	193	0	201			0	0		0
Percent Heavy Vehicles		3	0	3			0	0		0
Percent Grade (%)			0					0		
Flared Approach			N					N		
Storage			0					0		
RT Channelized				0						0
Lanes	1	0	0	0			0	0		0
Configuration			LR							
Delay, Queue Length, a	and Leve	el of Se	rvice	,						
Approach	Northb	T T	Southbound	1	Nestb	ound		Е	astboun	
Movement	1		4	7	8		9	10	11	12
Lane Configuration			LT						LR	
v (veh/h)			112						394	
C (m) (veh/h)			1278						597	
v/c			0.09						0.66	†
95% queue length			0.29						4.88	+
Control Delay (s/veh)			8.1						22.0	+
LOS			A. 1						22.0 C	+
Approach Delay (s/veh)									22.0	
Approach LOS									C	

	TW	O-WAY STOP	CONTR	OL SUM	MARY					
General Informatio	n		Site I	nformati	ion					
Analyst	SKB		Interse	ection		SR 59 @) I-40 WB F	Ramps		
Agency/Co.	TDOT/Tra	anSystems	Jurisd	iction		Fayette (•		
Date Performed	04/18/20		Analys	sis Year		2034				
Analysis Time Period	AM Peak	Period								
Project Description Ex		าร								
East/West Street: I-40					et: SR 59)				
ntersection Orientation:	North-South		Study	Period (hrs	s): <i>0.25</i>					
Vehicle Volumes a	nd Adjustme	ents								
Major Street		Northbound				Southbo	und			
Movement	1	2	3		4	5		6		
	L	T	R		L	T		R		
/olume (veh/h)	209	154	0.00		0.00	124		199		
Peak-Hour Factor, PHF Hourly Flow Rate, HFR	0.90	0.90	0.90	<u>'</u>	0.90	0.90		0.90		
veh/h)	232	171	0		0	137		221		
Percent Heavy Vehicles	3				3					
Median Type				Undivide	ed					
RT Channelized			0	ļ				0		
anes	0	1	0		0	1		0		
Configuration	LT							TR		
Jpstream Signal		0				0	<u> </u>			
Minor Street		Eastbound				Westbou	ınd			
Movement	7	8	9		10	11		12		
	L	Т	R		L	Т		R		
/olume (veh/h)					81			78		
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90		
Hourly Flow Rate, HFR veh/h)	0	0	0		90	0		86		
Percent Heavy Vehicles	3	0	3		3	0		3		
Percent Grade (%)		0				0				
lared Approach		N				N				
Storage	1	0				0				
RT Channelized	1	1	0	<u> </u>		1	\neg	0		
_anes	0	0	0	- 	0	0	- -	0		
Configuration	 	 	† *	- 		LR	+	-		
Delay, Queue Length, a	and Level of Se	ervice	1							
Approach	Northbound	Southbound	,	Westbound			Eastbound			
Movement	1	4	7	8	9	10	11	12		
	LT		'	LR	+ 3	10	''	 		
Lane Configuration					-		-	-		
/ (veh/h)	232			176				—		
C (m) (veh/h)	1195			388				<u> </u>		
ı/c	0.19			0.45				<u> </u>		
95% queue length	0.72			2.29						
Control Delay (s/veh)	8.7			21.8						
_OS	Α			С						
Approach Delay (s/veh)				21.8	1	1	<u>I</u>			
Approach LOS				C		+				
Copyright © 2008 University of F			<u> </u>	CS+ TM Vers			rated: 4/20/20			

	TW	O-WAY STOP	CONTR	OL SUM	MARY			
General Informatio	n		Site I	nformati	on			
Analyst	SKB		Interse	ection		SR 59 @	. I-40 WB F	Ramps
Agency/Co.	TDOT/Tra	anSystems	Jurisdi	ction		Fayette (,
Date Performed	04/18/20		Analys	sis Year		2034		
Analysis Time Period	PM Peak	Period						
Project Description Ex	kisting Condition	าร						
East/West Street: I-40				South Stre)		
ntersection Orientation:	North-South		Study	Period (hrs	s): 0.25			
Vehicle Volumes a	nd Adjustme	ents						
Major Street		Northbound				Southbo	und	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume (veh/h)	135	188	0.00		0.00	108		128
Peak-Hour Factor, PHF Hourly Flow Rate, HFR	0.90	0.90	0.90	<u>'</u>	0.90	0.90		0.90
veh/h)	150	208	0		0	120		142
Percent Heavy Vehicles	3				3			
Median Type				Undivide	d			
RT Channelized			0					0
_anes	0	1	0		0	1		0
Configuration	LT							TR
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	ınd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
/olume (veh/h)					109			107
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90
Hourly Flow Rate, HFR veh/h)	0	О	0		121	О		118
Percent Heavy Vehicles	3	0	3		3	0		3
Percent Grade (%)		0				0	<u>, </u>	
Flared Approach		N				N		
Storage		0				0		
RT Channelized	 	 	0			 	- -	0
Lanes	0	0	0		0	0		0
Configuration	 	 	 	- -		LR	_	
Delay, Queue Length, a	and Lovel of Se							
Approach	Northbound	Southbound	1 ,	Westbound	٦	1	Eastbound	
Movement	1	4	7	8	9	10	11	12
		4	/		9	10	''	12
_ane Configuration	LT 450			LR	1	+	-	_
/ (veh/h)	150			239				
C (m) (veh/h)	1296			498	<u> </u>			
//c	0.12			0.48				
95% queue length	0.39			2.57				
Control Delay (s/veh)	8.1			18.7				
_OS	Α			С	1			
Approach Delay (s/veh)				18.7	•			
Approach LOS				С		1		
Copyright © 2008 University of F			I	CS+ TM Vers			ated: 4/20/20	14 400

	TW	O-WAY STOP	CONTR	OL SI	JMI	MARY				
General Information	n		Site I	nform	natio	on				
Analyst	SKB		Interse	ection			SR 222 (@ Pilo	t Dw	/.
Agency/Co.	TDOT/Tra	anSystems	Jurisd	iction						
Date Performed	04/18/20	11	Analys	sis Yea	r		2014			
Analysis Time Period	AM Peak	Period								
		is (No Build)	,							
East/West Street: Pilot	Dwy.						2			
Intersection Orientation:	North-South		Study	Period	(hrs)	: <i>0.</i> 25				
	SKB									
Major Street							7	<u>und</u>		
Movement										6
	<u> </u>	<u> </u>								R
Volume (veh/h)	0.00	_		,						0.00
Peak-Hour Factor, PHF	0.90	0.90	0.90	<u>'</u>		0.90	0.90	\dashv		0.90
Hourly Flow Rate, HFR (veh/h)	0	217	10			100	280			0
Percent Heavy Vehicles	0									
Median Type				Undiv	/idec	1				
RT Channelized			0							0
Lanes	0	1	0				1			0
Configuration			TR			LT				
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	_	_							12
	L	Т	R				Т			R
Volume (veh/h)										135
Peak-Hour Factor, PHF	0.90	0.90	0.90)		0.90	0.90		(0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0			5	0			150
Percent Heavy Vehicles	3	0	3			25	0			25
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			0	0			0
Configuration							LR			
Delay, Queue Length, a	and Level of Se	ervice								
Approach	Northbound	Southbound	,	Westbo	ound		I	Eastbo	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		LT		LR						
v (veh/h)		100		155	5					
C (m) (veh/h)		1217		734	1					
v/c		0.08		0.21	1					
95% queue length		0.27		0.79	9					
Control Delay (s/veh)		8.2		11.2	2					
LOS		A		В						†
Approach Delay (s/veh)				11.2		<u>I</u>				<u> </u>
Approach LOS				B	_		 			
Copyright @ 2009 University of E		ļ	<u> </u>	oo TM v					/20/201	1 12:42 DA

		O-WAY STOP							
General Information	n		Site	Inform	ation				
Analyst	SKB		Inters	ection		SR 222	@ Pilot Dw	у.	
Agency/Co.		anSystems		diction		Fayette (County		
Date Performed	04/18/20 ⁻		Analy	sis Year		2014			
Analysis Time Period	PM Peak	Period							
Project Description Ex		ns (No Build)							
East/West Street: Pilot					reet: SR 22	22			
ntersection Orientation:	North-South		Study	Period (hrs): <i>0.25</i>				
Vehicle Volumes au	nd Adjustme	ents							
Major Street		Northbound				-	outhbound		
Movement	1	2	3		4	5		6	
	L	Т	R		L	T		R	
Volume (veh/h)		255	11		153	132			
Peak-Hour Factor, PHF	0.90	0.90	0.9	0	0.90	0.90		0.90	
Hourly Flow Rate, HFR veh/h)	0	283	12	· [170	146		0	
Percent Heavy Vehicles	0		 		25		-+		
Median Type	 			Undivi					
RT Channelized	1	<u> </u>	1 (0	
_anes	0	1	0	- 	0	1	\dashv	0	
Configuration	 	'	TF	, +	LT	+ '	-+		
Jpstream Signal		0	 ''	` 		0			
Minor Street	<u> </u>		<u> </u>			Westbou			
Movement	7	Eastbound 8] 9	-	10	11	ina	12	
viovernent	, , , , , , , , , , , , , , , , , , ,		R		IU	T T		R	
/olume (veh/h)	 	<u>'</u>		·	2	<u> </u>		127	
Peak-Hour Factor, PHF	0.90	0.90	0.9	0	0.90	0.90		0.90	
Hourly Flow Rate, HFR				' 					
(veh/h)	0	0	0		2	0		141	
Percent Heavy Vehicles	3	0	3		25	0		25	
Percent Grade (%)		0				0			
Flared Approach	1	N				N			
Storage	-	0	†	+		0			
RT Channelized	+	 		, 		+ -	-+	0	
Lanes	0	0	0		0	0	- -	0	
Configuration	+		 	+	U	LR	-	U	
Delay, Queue Length, a	and Lovel of Co					LIN			
Approach	Northbound	Southbound		Westbo	und		Eastbound		
			7		9		1	12	
Movement	1	4	- /	8	9	10	11	12	
_ane Configuration		LT		LR				_	
v (veh/h)		170		143					
C (m) (veh/h)		1146		685					
//c		0.15		0.21					
95% queue length		0.52		0.78					
Control Delay (s/veh)		8.7		11.6					
_OS		A		В		1			
Approach Delay (s/veh)				11.6		+		1	
, , ,		<u> </u>				+			
Approach LOS			В			1			

	TW	O-WAY STOP	CONTRO	OL SUM	MARY			
General Informatio	n		Site Ir	nformati	on			
Analyst	SKB		Interse	ction		SR 222 (@ I-40 EB F	===== Ramps
Agency/Co.	TDOT/Tra	anSystems	Jurisdio	ction		Fayette C		
Date Performed	04/18/201	11	Analys	is Year		2014		
Analysis Time Period	AM Peak	Period						
Project Description Ex	kisting Conditior	ns (No Build)						
East/West Street: I-40	EB Ramps		North/S	outh Stree	et: <i>SR 22</i>	2		
Intersection Orientation:	North-South		Study F	Period (hrs): <i>0.</i> 25			
Vehicle Volumes ar	nd Adiustme	nts						
Major Street	1	Northbound				Southbou	und	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume (veh/h)		217	114		118	208		
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90	(0.90
Hourly Flow Rate, HFR (veh/h)	0	241	126		131	231		0
Percent Heavy Vehicles	0				10			
Median Type				Undivide	d			
RT Channelized			0					0
Lanes	0	1	0		0	1	\neg	0
Configuration			TR		LT			
Upstream Signal		0				0		
Minor Street	-	Eastbound		- -		Westbou	ınd	
Movement	7	8	9		10	11		12
	Ĺ	T	R		L	T		R
Volume (veh/h)	581		134			† 	_	
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90
Hourly Flow Rate, HFR				\neg				
(veh/h)	645	0	148		0	0		0
Percent Heavy Vehicles	10	0	25		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage	1	0				0		
RT Channelized	+		0			+		0
Lanes	0	0	0	_	0	0	-+	0
Configuration	+ -	LR	+ -	_	U	+ -	-+	
	and Lovert of Co							
Delay, Queue Length, a		1 2	· ·	N/o o 4 lo o o a	ı			
Approach	Northbound	Southbound		Vestbound			Eastbound	T 42
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT					LR	
v (veh/h)		131					793	
C (m) (veh/h)		1149					344	
v/c		0.11				1	2.31	
95% queue length		0.38				 	61.00	
Control Delay (s/veh)		8.5			1	+	620.8	1
LOS						+		
		Α				+	F	<u></u>
Approach Delay (s/veh)						 	620.8	
Approach LOS			F					

	TW	O-WAY STOP	CONTRO	OL SUMI	MARY			
General Information	n		Site Ir	nformati	on			
Analyst	SKB		Interse	ction		SR 222	@ I-40 EB F	Ramps
Agency/Co.		anSystems	Jurisdi			Fayette (County	
Date Performed	04/18/20 ⁻		Analys	is Year		2014		
Analysis Time Period	PM Peak							
Project Description Ex		ns (No Build)						
East/West Street: I-40				outh Stree		2		
ntersection Orientation:	North-South		Study F	Period (hrs): <i>0.</i> 25			
Vehicle Volumes au	nd Adjustme							
Major Street		Northbound				Southbo	und	
Movement	1 1	2	3		4	5		6
/ - l / l - /l- \	L	T	R		L	T 450		R
Volume (veh/h) Peak-Hour Factor, PHF	0.90	240 0.90	142 0.90		225 0.90	159 0.90	- ,	0.90
Hourly Flow Rate, HFR			1					
veh/h)	0	266	157		250	176		0
Percent Heavy Vehicles	0				10			
Median Type				Undivided	d			
RT Channelized			0					0
_anes	0	1	0		0	1		0
Configuration			TR		LT			
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	ınd	
Movement	7	8	9		10	11		12
	L	T	R		L	T		R
/olume (veh/h)	271		126					
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90	(0.90
Hourly Flow Rate, HFR	301	0	140		0	0		0
(veh/h)			<u> </u>					
Percent Heavy Vehicles	10	0	25		0	0		0
Percent Grade (%)		0	1			0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a								
Approach	Northbound	Southbound	V	Vestbound			Eastbound	1
Movement	1	4	7	8	9	10	11	12
ane Configuration		LT					LR	
/ (veh/h)		250					441	
C (m) (veh/h)		1095					257	
r/c		0.23			<u> </u>	†	1.72	
95% queue length		0.88				+	28.75	
Control Delay (s/veh)		9.3			-	+	371.8	
OS					-	+	571.6 F	
		Α			<u> </u>	+	<u> </u>	
Approach Delay (s/veh)						+	371.8	
Approach LOS				F				

	TW	O-WAY STOP	CONTR	OL SI	JMI	MARY						
General Informatio	n		Site I	nform	atio	on						
Analyst	SKB		Interse	ection			SR 222 (@ I-4 0	WB	Ramps		
Agency/Co.	TDOT/Tr	ranSystems	Jurisdi				Fayette 0	County	/	·		
Date Performed	04/18/20		Analys	sis Yea	r		2014					
Analysis Time Period	AM Peak											
Project Description Ex		ns (No Build)										
East/West Street: I-40						t: SR 222						
Intersection Orientation:			Study I	Period	(hrs)	: 0.25						
Vehicle Volumes a	nd Adjustme											
Major Street		Northbound	1 0				Southbou	ınd T				
Movement	1 1	2 	3 R	\rightarrow		4	5 T			6 R		
Volume (veh/h)	83	715	R			L	209			304		
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90	-+		0.90		
Hourly Flow Rate, HFR							i e	$\overline{}$				
(veh/h)	92	794	0			0	232			337		
Percent Heavy Vehicles	25					3						
Median Type				Undiv	⁄idec	1						
RT Channelized			0							0		
Lanes	0	1	0			0	1			0		
Configuration	LT									TR		
Upstream Signal		0					0					
Minor Street		Eastbound					Westbou	ınd				
Movement	7	8	9			10	11			12		
	L	Т	R			L	Т			R		
Volume (veh/h)						117			·		257	
Peak-Hour Factor, PHF	0.90	0.90	0.90	<u> </u>		0.90	0.90		0.90 0.			
Hourly Flow Rate, HFR (veh/h)	0	0	0			130	0		0			285
Percent Heavy Vehicles	3	0	3			25	0		0			10
Percent Grade (%)		0					0					
Flared Approach		N					N					
Storage		0					0					
RT Channelized			0							0		
Lanes	0	0	0			0	0			0		
Configuration							LR					
Delay, Queue Length, a	and Level of S	ervice										
Approach	Northbound	Southbound	1	Westbo	ound		I	Eastbo	ound			
Movement	1	4	7	8		9	10	1	1	12		
Lane Configuration	LT			LR								
v (veh/h)	92			415	5							
C (m) (veh/h)	899			233	}							
v/c	0.10			1.78	3							
95% queue length	0.34			28.2								
Control Delay (s/veh)	9.5			404.								
LOS	A	 		F	_		 					
Approach Delay (s/veh)				404.:	2			<u> </u>		<u></u>		
Approach LOS				F								
Converget © 2009 University of F							Conor		20/201			

	I W	O-WAY STOP	CONTR	OL SUM	MARY				
General Information	n		Site II	nformati	ion				
Analyst	SKB		Interse	ction		SR 222 @ I-40 WB R			
Agency/Co.	TDOT/Tr	anSystems		Jurisdiction			Fayette County		
Date Performed	04/18/20		Analys	is Year		2014			
Analysis Time Period	PM Peak								
Project Description Ex		ns (No Build)	•						
East/West Street: I-40					et: SR 22	?2			
ntersection Orientation:			Study I	Period (hrs	s): <i>0.</i> 25				
/ehicle Volumes ar	nd Adjustme								
Major Street	ļ	Northbound				Southbo	und		
Movement	1	2	3		4	5		6	
(- 1 (1 - // -)	L	T 105	R		L	T		R	
Volume (veh/h) Peak-Hour Factor, PHF	106 0.90	405 0.90	0.90		0.90	286 0.90		514 0.90	
Hourly Flow Rate, HFR		0.90	0.90	_	0.90				
veh/h)	117	450	0		0	317		571	
Percent Heavy Vehicles	25				3				
Median Type	1	•		Undivide	d				
RT Channelized			0					0	
_anes	0	1	0		0	1		0	
Configuration	LT						TR		
Jpstream Signal	1	0	1			0			
Minor Street		Eastbound				Westbou	ınd		
Movement	7	8	9	9 10		11		12	
	L	Т	R		L	Т		R	
Volume (veh/h)		1	1		98			122	
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90	
Hourly Flow Rate, HFR	0	0	0		108	0		135	
(veh/h)									
Percent Heavy Vehicles	3	0	3		25	0		10	
Percent Grade (%)		0	1			0			
Flared Approach		N				N			
Storage		0	ļ			0			
RT Channelized			0					0	
_anes	0	0	0		0	0		0	
Configuration						LR			
Delay, Queue Length, a	nd Level of S	ervice							
Approach	Northbound	Southbound	1	Nestbound	d		Eastbound		
Movement	1	4	7	8	9	10	11	12	
_ane Configuration	LT			LR				1	
/ (veh/h)	117			243		†	†		
C (m) (veh/h)	675			236		+		 	
//C	0.17			1.03			-	\vdash	
		-				+	-	\vdash	
95% queue length	0.62	ļ		9.99			-	├─	
Control Delay (s/veh)	11.4	ļ		111.3				├	
_OS	В	<u> </u>		F			<u> </u>		
Approach Delay (s/veh)				111.3					
Approach LOS			F						

	TW	O-WAY STOP	CONTR	OL SI	UMI	MARY				
General Informatio	n		Site I	nform	natio	on				
Analyst	SKB		Interse	ection			SR 222 (@ Pilot	t Dwy	<i>'</i> .
Agency/Co.	TDOT/Tr	anSystems	Jurisdi	ction			Fayette (
Date Performed	04/18/20		Analys	is Yea	r		2034			
Analysis Time Period	AM Peak	Period								
Project Description Ex		ns (No Build)								
East/West Street: Pilot						t: SR 222	?			
Intersection Orientation:			Study I	Period	(hrs)): 0.25				
Vehicle Volumes a	nd Adjustme									
Major Street		Northbound	1 0			4	Southbou	und T		
Movement	1	2	3 R			4 	5 T	\rightarrow		6 R
Volume (veh/h)	L	218	11			105	309	-		ĸ
Peak-Hour Factor, PHF	0.90	0.90	0.90	,		0.90	0.90	\dashv		0.90
Hourly Flow Rate, HFR								\dashv		
(veh/h)	0	242	12			116	343			0
Percent Heavy Vehicles	0					25				
Median Type				Undi	/idec	1				
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration			TR			LT				
Upstream Signal		0					0			
Minor Street		Eastbound					Westbou	ınd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume (veh/h)						6			1.	
Peak-Hour Factor, PHF	0.90	0.90	0.90	'		0.90	0.90		0.90 0.	
Hourly Flow Rate, HFR (veh/h)	0	0	0			6	0		0 1	
Percent Heavy Vehicles	3	0	3			25	0			25
Percent Grade (%)		0					0			
Flared Approach	1	N					N			
Storage	1	0					0			
RT Channelized			0				ĺ			0
Lanes	0	0	0			0	0			0
Configuration							LR			
Delay, Queue Length, a	and Level of S	ervice								
Approach	Northbound	Southbound	,	Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration		LT		LR)					
v (veh/h)		116		182	2					
C (m) (veh/h)		1188		701	1					
v/c		0.10		0.26	6					
95% queue length		0.32		1.04	4					
Control Delay (s/veh)		8.4		11.9	9					
LOS		A		В						
Approach Delay (s/veh)				11.9	9	1	†			<u> </u>
Approach LOS				В						
Copyright © 2008 University of F		<u> </u>		Cs.TM			0		00/004	1 12·45 PI

	TW	O-WAY STOP	CONTR	OL SI	JMI	MARY					
General Informatio	n		Site I	nform	natio	on					
Analyst	SKB		Interse	ection			SR 222 (@ Pilo	t Dwy	<i>'</i> .	
Agency/Co.	TDOT/Ti	ranSystems	Jurisdi	ction			Fayette (
Date Performed	04/18/20		Analys	is Yea	r		2034				
Analysis Time Period	PM Peal	k Period									
Project Description Ex		ns (No Build)									
East/West Street: Pilot						t: SR 222	?				
Intersection Orientation:			Study I	Period	(hrs)	: 0.25					
Vehicle Volumes a	nd Adjustm										
Major Street		Northbound	1 -				Southbou	und r			
Movement	1 1	2	3			4	5 T	\rightarrow		6	
\/ a /	L L	T 204	R 13			L 200	181			R	
Volume (veh/h) Peak-Hour Factor, PHF	0.90	284 0.90	0.90	<u> </u>		200 0.90	0.90			0.90	
Hourly Flow Rate, HFR			0.90	<u>'</u>				\rightarrow			
(veh/h)	0	315	14			222	201			0	
Percent Heavy Vehicles	0					25					
Median Type				Undi	/idea	1					
RT Channelized			0							0	
Lanes	0	1	0			0	1			0	
Configuration			TR			LT					
Upstream Signal		0					0				
Minor Street		Eastbound	_				Westbou	ınd			
Movement	7	8	9			10	11	\rightarrow		12	
	L	T	R			L	Т			R	
Volume (veh/h)						3					150
Peak-Hour Factor, PHF	0.90	0.90	0.90	'		0.90	0.90		0.90 0.		
Hourly Flow Rate, HFR (veh/h)	0	0	0			3	0		0 16		
Percent Heavy Vehicles	3	0	3			25	0			25	
Percent Grade (%)	1	0					0				
Flared Approach		N	1				N				
Storage		0	1				0				
RT Channelized			0							0	
Lanes	0	0	0			0	0			0	
Configuration							LR				
Delay, Queue Length, a	and Level of S	ervice									
Approach	Northbound	Southbound	,	Westbo	ound			Eastbo	ound		
Movement	1	4	7	8		9	10	1	1	12	
Lane Configuration		LT		LR							
v (veh/h)		222		169)						
C (m) (veh/h)		1112		643	3						
v/c		0.20		0.26	6						
95% queue length		0.74		1.0	5						
Control Delay (s/veh)		9.0		12.6	6						
LOS		Α		В							
Approach Delay (s/veh)				12.6	6						
Approach LOS				В			†				
Copyright © 2008 University of F	lavida All Diabta Da			Cs.TM			0	-41- 4:	1001004	1 12·45 Pi	

	TW	O-WAY STOP	CONTRO	OL SUMI	MARY			
General Information	n		Site Ir	formation	on			
Analyst	SKB		Interse	ction		SR 222	@ I-40 EB F	Ramps
Agency/Co.		anSystems	Jurisdio			Fayette County		
Date Performed	04/18/201		Analys	is Year		2034		
Analysis Time Period	AM Peak							
Project Description Ex		ns (No Build)	h					
East/West Street: I-40				outh Stree		2		
ntersection Orientation:			Study F	Period (hrs)): 0.25			
Vehicle Volumes au	<u>nd Adjustme</u>							
Major Street	<u> </u>	Northbound	1 -			Southboo	<u>und</u>	
Movement	1	2 T	3		4	5 T		6
/aluma (vah/h)	L	222	R 155	_	120	246		R
Volume (veh/h) Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90
Hourly Flow Rate, HFR	0.90	246	172		133	273		0
veh/h)						 		
Percent Heavy Vehicles	0			,, ,, ,,	10			
Median Type	_		1 -	Undivided	d	1		
RT Channelized		<u> </u>	0			1		0
_anes	0	1	0		0	1		0
Configuration			TR		LT	 		
Jpstream Signal		0				0		
Minor Street		Eastbound	1 .		4.0	Westbound		10
Movement	7	8	9		10	11		12
	L	Т	R		L	T	R	
Volume (veh/h)	586	0.00	168		0.00	0.00		2.00
Peak-Hour Factor, PHF Hourly Flow Rate, HFR	0.90	0.90	0.90	-+	0.90	0.90	0.90	
veh/h)	651	0	186		0	0		0
Percent Heavy Vehicles	10	0	25		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	and Level of Se	ervice						
Approach	Northbound	Southbound	V	Vestbound	1		Eastbound	
Movement	1	4	7	8	9	10	11	12
_ane Configuration		LT			ĺ		LR	
v (veh/h)		133			<u> </u>	1	837	
C (m) (veh/h)		1099			 	1	316	
//C		0.12	+		 	+	2.65	
		0.41				+		
95% queue length						+	69.63	
Control Delay (s/veh)		8.7					776.2	
_OS		Α				 	F	
Approach Delay (s/veh)							776.2	
Approach LOS						1	F	

	TV	VO-WAY STOP	CONTR	OL S	UMMARY	,		
General Information	n		Site I	nforn	nation			
Analyst	SKB		Interse	ection		SR 222 (② I-40 EB	Ramps
Agency/Co.	TDOT/1	ranSystems	Jurisdi	ction		Fayette C		,
Date Performed	04/18/2		Analys	is Yea	ır	2034		
Analysis Time Period	PM Pea	k Period						
Project Description Ex		ons (No Build)						
East/West Street: I-40					Street: SR			
Intersection Orientation:	North-South	1	Study I	Period	(hrs): 0.25	5		
Vehicle Volumes a	nd Adjustm	ents						
Major Street		Northbound				Southbou	ınd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume (veh/h)	0.00	250	184		226	208		0.00
Peak-Hour Factor, PHF Hourly Flow Rate, HFR	0.90	0.90	0.90		0.90	0.90	_	0.90
(veh/h)	0	277	204		251	231		0
Percent Heavy Vehicles	0				10		1	
Median Type				Undi	vided	<u> </u>		
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration			TR		LT			
Upstream Signal		0				0		
Minor Street		Eastbound				Westbou	nd	
Movement	7	8	9		10	11		12
	L	Т	R		L	Т		R
Volume (veh/h)	276		173					
Peak-Hour Factor, PHF	0.90	0.90	0.90	1	0.90	0.90		0.90
Hourly Flow Rate, HFR (veh/h)	306	0	192		0	0		0
Percent Heavy Vehicles	10	0	25		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	0	0		0	0		0
Configuration		LR						
Delay, Queue Length, a	and Level of S	Service						
Approach	Northbound	Southbound	,	Vestb	ound	E	astbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT					LR	
v (veh/h)		251					498	
C (m) (veh/h)		1041					241	
v/c		0.24					2.07	
95% queue length		0.94			\neg		37.15	
Control Delay (s/veh)		9.6					527.2	
LOS		A		 	_	<u> </u>	F	
Approach Delay (s/veh)						+	527.2	ı
Approach LOS						+	527.2 F	
Capyright © 2008 University of F			<u> </u>	oo TM				14 12:50 DM

	TW	O-WAY STOP	CONTR	OL SI	JMI	MARY						
General Informatio	n		Site I	nform	atio	on						
Analyst	SKB		Interse	ection			SR 222 (@ I-4 0	WB	Ramps		
Agency/Co.	TDOT/Tr	anSystems	Jurisdi				Fayette County		County			
Date Performed	04/18/20		Analys	sis Yea	r		2034					
Analysis Time Period	AM Peak											
Project Description Ex		ns (No Build)										
East/West Street: I-40						t: SR 222						
Intersection Orientation:			Study	Period	(hrs)	: 0.25						
Vehicle Volumes a	nd Adjustmo											
Major Street	1	Northbound	1 2			4	Southbound					
Movement	1 L	2 	3 R	\longrightarrow		4 	5 T	\rightarrow		6 R		
Volume (veh/h)	110	698	<u> </u>	\dashv			232	\rightarrow		32 <i>4</i>		
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90	\dashv		0.90		
Hourly Flow Rate, HFR							i e					
(veh/h)	122	775	0			0	257			360		
Percent Heavy Vehicles	25					3						
Median Type				Undi	/idea	l						
RT Channelized			0							0		
Lanes	0	1	0			0	1			0		
Configuration	LT											TR
Upstream Signal		0					0		0			
Minor Street		Eastbound					Westbou	ınd				
Movement	7	8	9			10	11			12		
	L	T	R			L	Т			R		
Volume (veh/h)						143					258 0.90	
Peak-Hour Factor, PHF	0.90	0.90	0.90)		0.90	0.90		0.90			
Hourly Flow Rate, HFR (veh/h)	0	0	0			158	0		0			286
Percent Heavy Vehicles	3	0	3			25	0		0			10
Percent Grade (%)		0					0					
Flared Approach		N					N					
Storage		0					0					
RT Channelized			0							0		
Lanes	0	0	0			0	0			0		
Configuration							LR					
Delay, Queue Length, a	and Level of S	ervice										
Approach	Northbound	Southbound	1	Westbo	ound			Eastbo	ound			
Movement	1	4	7	8		9	10	1	1	12		
Lane Configuration	LT			LR								
v (veh/h)	122			444	1							
C (m) (veh/h)	861			203	}					1		
v/c	0.14			2.19	9							
95% queue length	0.49			34.9			<u> </u>			<u> </u>		
Control Delay (s/veh)	9.9			587.				\vdash				
LOS	A.	 		507. F			-	\vdash		 		
Approach Delay (s/veh)				587.						<u>I</u>		
Approach LOS		-		567. F	9							
Approach LOS									/20/204			

	TW	O-WAY STOP	CONTR	OL SUM	MARY			
General Informatio	n		Site I	nformati	ion			
Analyst	SKB		Interse	ection		SR 222 (@ <i>I-40 WB</i>	Ramps
Agency/Co.	TDOT/Tra	anSystems	Jurisd	iction		Fayette County		
Date Performed	04/18/20		Analys	sis Year		2034		
Analysis Time Period	PM Peak	Period						
Project Description Ex		ns (No Build)						
East/West Street: I-40					et: SR 22	22		
ntersection Orientation:	North-South		Study	Period (hrs	s): <i>0.25</i>			
Vehicle Volumes a	nd Adjustme	ents						
Major Street		Northbound				Southboo	und	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume (veh/h)	130	396	0.00	\leftarrow	0.00	302		520
Peak-Hour Factor, PHF Hourly Flow Rate, HFR	0.90	0.90	0.90	' 	0.90	0.90	<u> </u>	0.90
(veh/h)	144	440	0		0	335		577
Percent Heavy Vehicles	25				3			
Median Type				Undivide	ed			
RT Channelized			0					0
_anes	0	1	0		0	1		0
Configuration	LT						TR	
Jpstream Signal		0				0		
Minor Street		Eastbound				Westbou	ınd	
Movement	7	8	9		10	11		12
	L	Т	R		L	T	R	
/olume (veh/h)					132			125
Peak-Hour Factor, PHF	0.90	0.90	0.90)	0.90	0.90	(0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0		146	0	0	
Percent Heavy Vehicles	3	0	3		25	0		10
Percent Grade (%)		0				0		
Flared Approach		N	1			N		
Storage		0				0		
RT Channelized	1	1	0			1	$\overline{}$	0
Lanes	0	0	0		0	0	- -	0
Configuration	 	1	 	- 		LR	- -	
Delay, Queue Length, a	and Level of Se	ervice						
Approach	Northbound	Southbound		Westboun	d		Eastbound	
Movement	1	4	7	8	9	10	11	12
_ane Configuration	LT		 '	LR	+ -	10	 ''	12
		-	 		+	+	 	-
/ (veh/h)	144		-	284	1	-	-	├──
C (m) (veh/h)	660			191				
//c	0.22		ļ	1.49	ļ		ļ	
95% queue length	0.83		ļ	17.66				
Control Delay (s/veh)	12.0			290.3				
LOS	В			F				
Approach Delay (s/veh)			ĺ	290.3	-		-	
			1					
LOS Approach Delay (s/veh) Approach LOS Copyright © 2008 University of F			Н		ion 5.4	Gener	ated: 4/20/201	_

	T	WO-WAY STOP	CONTR	OL S	UMM	ARY				
General Information	n		Site I	nforn	nation)				
Analyst	SKB		Interse	ection			SR 222 (@ I-40 EI	B Ramps	
Agency/Co.		TranSystems	Jurisdi	ction			Fayette C	County	·	
Date Performed	04/18/2	2011	Analys	sis Yea	ar		2014			
Analysis Time Period	AM Pe	ak Period								
Project Description Tr	aditional Diai	mond + SE Loop Ra								
East/West Street: I-40		-				SR 222	?			
Intersection Orientation:			Study I	Period	(hrs):	0.25				
Vehicle Volumes a	nd Adjustr									
Major Street		Northbound	1				Southbou	ınd		
Movement	1 1	2	3			4	5		6	
\/a aa (ab./b)	<u>L</u>	T	R			L	T		R	
Volume (veh/h) Peak-Hour Factor, PHF	0.90	217 0.90	114 0.90			18 90	208 0.90		0.90	
Hourly Flow Rate, HFR		0.90	<u> </u>					_		
(veh/h)	0	241	126		1	31	231		0	
Percent Heavy Vehicles	0				1	10				
Median Type		•								
RT Channelized			0						0	
Lanes	0	2	0			0	2		0	
Configuration		T	TR			.T	Т			
Upstream Signal		0					0			
Minor Street		Eastbound					Westbound			
Movement	7	8	9			10	11		12	
	L	Т	R			L	Т		R	
Volume (veh/h)			134							
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.	90	0.90		0.90	
Hourly Flow Rate, HFR (veh/h)	0	0	148			0	0		0	
Percent Heavy Vehicles	10	0	25			0	0		0	
Percent Grade (%)		0					0		-	
Flared Approach		N					N			
Storage	+	0	+				0			
RT Channelized	 		0						0	
Lanes	0	0	1			0	0		0	
Configuration	<u> </u>		R							
Delay, Queue Length, a	nd Level of	Service			l		<u> </u>			
Approach	Northbound		,	Westb	ound		Ι ι	Eastbour	nd	
Movement	1	4	7	8		9	10	11	12	
Lane Configuration		LT	<u> </u>						R	
v (veh/h)		131							148	
C (m) (veh/h)		1133	1					1	865	
v/c		0.12			\dashv				0.17	
95% queue length		0.39	<u> </u>	 	\dashv			<u> </u>	0.62	
Control Delay (s/veh)		8.6		_				_	10.0	
LOS		A A	-					 	10.0 B	
			-				-	10.0	<i>D</i>	
Approach Delay (s/veh)		_	<u> </u>							
Approach LOS			I	oo TM				B at a d : 4/20/		

	TW	O-WAY STOP	CONTR	OL S	UMMARY	,				
General Informatio	n		Site II	nforn	nation					
Analyst	SKB		Interse	ection		SR 222	@ I-40 E	B Ramps		
Agency/Co.		ranSystems	Jurisdi			Fayette	County			
Date Performed	04/18/20		Analys	sis Yea	ır	2014				
Analysis Time Period	PM Peak									
Project Description Tr		ond + SE Loop Ra								
East/West Street: I-40					Street: SR					
Intersection Orientation:			Study I	erioa	(hrs): 0.25)				
Vehicle Volumes a	<u>nd Adjustm</u>									
Major Street		Northbound	1			Southbo	und			
Movement	1 1	2 	3 R		4	5T		6		
Volume (veh/h)	L	240	142		225	159		R		
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90		
Hourly Flow Rate, HFR	<u> </u>		1				- 			
(veh/h)	0	266	157		250	176		0		
Percent Heavy Vehicles	0				10					
Median Type		Undivided								
RT Channelized			0					0		
Lanes	0	2	0		0	2		0		
Configuration		T	TR		LT	T				
Upstream Signal		0				0				
Minor Street		Eastbound				Westbo	Westbound			
Movement	7	8	9		10	11		12		
	L	Т	R		L	Т		R		
Volume (veh/h)			126							
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90		
Hourly Flow Rate, HFR (veh/h)	0	0	140		0	0		0		
Percent Heavy Vehicles	10	0	25		0	0		0		
Percent Grade (%)		0				0				
Flared Approach		N				N				
Storage		0				0				
RT Channelized			0					0		
Lanes	0	0	1		0	0		0		
Configuration			R							
Delay, Queue Length, a	and Level of S	ervice								
Approach	Northbound	Southbound	1	Westb	ound		Eastbou	nd		
Movement	1	4	7	8	9	10	11	12		
Lane Configuration		LT			 		1	R		
v (veh/h)		250					1	140		
C (m) (veh/h)		1078		_	+		1	899		
v/c		0.23		 	_		1	0.16		
95% queue length		0.90		 			+	0.75		
Control Delay (s/veh)		9.3		 	+		+	9.7		
							+			
LOS		Α					A			
Approach Delay (s/veh)							9.7			
Approach LOS					Varsian F 4		Α			

	TW	O-WAY STOP	CONTR	OL S	UMMARY				
General Informatio	n		Site I	nforn	nation				
Analyst	SKB		Interse	ection		SR 222 (@ I-40 EB	Ramps	
Agency/Co.	TDOT/Tra	anSystems	Jurisdi	ction		Fayette (,	
Date Performed	04/18/20 ⁻		Analys	is Yea	r	2034			
Analysis Time Period	AM Peak	Period							
		nd + SE Loop Ra							
East/West Street: I-40					Street: SR 2	222			
Intersection Orientation:	North-South		Study F	Period	(hrs): 0.25				
Vehicle Volumes a	nd Adjustme	ents							
Major Street		Northbound				Southbou	und		
Movement	1	2	3		4	5		6	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	L L	T	R		L	T		R	
Volume (veh/h) Peak-Hour Factor, PHF	0.90	222	155		120	246		0.90	
Hourly Flow Rate, HFR		0.90	0.90		0.90	0.90	-+		
(veh/h)	0	246	172		133	273		0	
Percent Heavy Vehicles	0				10				
Median Type		•	•	Undi	vided	•	•		
RT Channelized			0					0	
Lanes	0	2	0		0	2		0	
Configuration		T	TR		LT	T			
Upstream Signal		0				0			
Minor Street		Eastbound				Westbou	Westbound		
Movement	7	8	9		10	11		12	
	L	Т	R		L	Т		R	
Volume (veh/h)			168						
Peak-Hour Factor, PHF	0.90	0.90	0.90	1	0.90	0.90		0.90	
Hourly Flow Rate, HFR (veh/h)	0	0	186		0	0		0	
Percent Heavy Vehicles	10	0	25		0	0		0	
Percent Grade (%)		0				0			
Flared Approach		N				N			
Storage		0				0			
RT Channelized			0					0	
Lanes	0	0	1		0	0		0	
Configuration			R						
Delay, Queue Length, a	and Level of Se	ervice	,				•		
Approach	Northbound	Southbound	1	Vestb	ound		Eastbound	d	
Movement	1	4	7	8	9	10	11	12	
Lane Configuration		LT			1			R	
v (veh/h)		133						186	
C (m) (veh/h)		1083						841	
v/c		0.12					<u> </u>	0.22	
95% queue length		0.42						0.84	
Control Delay (s/veh)		8.8		_	+		 	10.5	
LOS		A			+			10.5 B	
					[_	10.5	В	
Approach Delay (s/veh)							10.5		
Approach LOS	lorido All Bighto Boo	<u></u>					B at ad: 4/20/2/	044 40:E7 DM	

	TW	O-WAY STOP	CONTR	OL SU	MMARY			
General Informatio	n		Site I	nforma	ation			
Analyst	SKB		Interse	ection		SR 222	@ I-40 EB	Ramps
Agency/Co.	TDOT/Tra	anSystems	Jurisdi	ction		Fayette (County	
Date Performed	04/18/20		Analys	is Year		2034		
Analysis Time Period	PM Peak	Period						
		nd + SE Loop Ra						
East/West Street: I-40					reet: SR 22	22		
ntersection Orientation:	North-South		Study I	Period (h	nrs): <i>0.25</i>			
Vehicle Volumes a	nd Adjustme	ents						
Major Street		Northbound				Southbo	und	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
/olume (veh/h)	0.00	250	184		226	208		0.00
Peak-Hour Factor, PHF	0.90	0.90	0.90	' 	0.90	0.90		0.90
Hourly Flow Rate, HFR veh/h)	0	277	204		251	231		0
Percent Heavy Vehicles	0				10			
Median Type				Undivi	ded			
RT Channelized			0					0
_anes	0	2	0		0	2		0
Configuration		Т	TR		LT	T		
Jpstream Signal		0				0		
linor Street		Eastbound				Westbou	ınd	
Movement	7	8	9		10	11		12
	L	Т	R		L	T		R
/olume (veh/h)			173					
Peak-Hour Factor, PHF	0.90	0.90	0.90		0.90	0.90		0.90
Hourly Flow Rate, HFR veh/h)	0	0	192		0	0		0
Percent Heavy Vehicles	10	0	25		0	0		0
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized		-	0			+		0
-anes	0	0	1		0	0		0
Configuration	 	 	R		U	+		
	and Lovel of Co	<u>l</u>	1 /				<u> </u>	
Delay, Queue Length, a	Northbound	Southbound	,	Westbou	ınd	1	Eastbound	
Approach							Т	1
Movement	1	4	7	8	9	10	11	12
ane Configuration		LT						R
/ (veh/h)		251						192
C (m) (veh/h)		1023						865
r/c		0.25						0.22
95% queue length		0.97						0.85
Control Delay (s/veh)		9.7						10.3
_OS		A				†		В
Approach Delay (s/veh)]	<u> </u>	+	10.3	
						+	10.5 B	
Approach LOS							В	

		TW	O-W	AY STOP	CON	TR	OL S	UMI	MARY					
General Informatio	n				Sit	te l	nform	natio	on					
Analyst		SKB			Int	erse	ection					e Rd (@ <i>I-4</i> () EB
Agency/Co.		TDOT/Tra	anSvs	stems						Ramp				
Date Performed		04/18/201			- 11		ction				ood	Coun	ity	
Analysis Time Period		AM Peak	Perio	nd		alys	sis Yea	ır		2014				
Project Description Ex	iotino	. Condition	20											
East/West Street: <i>I-40</i>			18		No	rth/ ^c	South 9	Stroo	t: Dancyv	ille Ros	nd .			
Intersection Orientation:									: 0.25	me ree	10			
Vehicle Volumes a			nts		1010	au y i	0.104	(1110)	. 0.20					
Major Street		ајазине		lorthbound						South	bou	ınd		
Movement		1		2		3			4	î .	5			6
		L		T		R			L		Т			R
Volume (veh/h)				121		14			15	2	21			
Peak-Hour Factor, PHF		0.90		0.90		0.90)		0.90	0.	90		С	.90
Hourly Flow Rate, HFR (veh/h)		0		134		15			16	2	23			0
Percent Heavy Vehicles		0							2					
Median Type							Undi	vided	1	-				
RT Channelized						0								0
Lanes		0		1		0			0		1			0
Configuration						TR			LT					
Upstream Signal		 		0						,	0			
Minor Street			E	astbound	,					West	bou	nd		
Movement		7		8		9			10	1	11			12
		L		Т		R			L		Т			R
Volume (veh/h)		52				50								
Peak-Hour Factor, PHF		0.90		0.90	(0.90)		0.90	0.	90		С	.90
Hourly Flow Rate, HFR (veh/h)		57		0		55			0		0			0
Percent Heavy Vehicles		2		0		2			0	(0			0
Percent Grade (%)				0							0			
Flared Approach				N							N			
Storage				0						,	0			
RT Channelized	1		十		1	0						一十		0
Lanes	1	0	\top	0	+	0			0		0	\neg		0
Configuration				LR	1									
Delay, Queue Length, a	and L	evel of Se	ervice											
Approach		hbound	ir .	uthbound		1	Westbo	ound			E	astbo	ound	
Movement		1		4	7		8		9	10		1	1	12
Lane Configuration		•		LT						1		LF		
v (veh/h)				16			_			 		11.		
				1432								89		
C (m) (veh/h)														
V/C				0.01			<u> </u>					0.1		
95% queue length				0.03			<u> </u>					0.4		
Control Delay (s/veh)			<u> </u>	7.5	ļ		ļ			<u> </u>		9.0		
LOS				Α				_				Α		
Approach Delay (s/veh)												9.6	3	
Approach LOS		-										Α		

		TW	O-WAY ST	OP	CONTR	OL S	UMI	MARY				
General Informatio	n				Site I	nforn	natio	on				
Analyst		SKB			Interse	ection			Dancyvill	e Rd @	1-40) EB
Agency/Co.			anSystems		—				Ramps			
Date Performed		04/18/201			- Jurisdi				Haywood	County	/	
Analysis Time Period		PM Peak			— Analys	sis Yea	ar		2014			
	ela tina	•										
Project Description Ex East/West Street: I-40			is		North/9	South	Stroc	et: Dancyv	illa Paad			
Intersection Orientation:): 0.25	ille Noau			
Vehicle Volumes a			nte		jotady i	Onou	(1110)).				
Major Street		ајазине	Northbou	ınd					Southbou	ınd		
Movement		1	2		3			4	5			6
		L	Т		R			L	Т			R
Volume (veh/h)			68		15			24	34			
Peak-Hour Factor, PHF		0.90	0.90		0.90			0.90	0.90		0	.90
Hourly Flow Rate, HFR (veh/h)		0	75		16			26	37			0
Percent Heavy Vehicles		0						2				
Median Type			•		ļ.	Undi	vided					
RT Channelized					0							0
Lanes		0	1		0			0	1			0
Configuration					TR			LT				
Upstream Signal			0						0			
Minor Street			Eastbou	nd					Westbou	nd		
Movement		7	8		9			10	11			12
		L	Т		R			L	Т			R
Volume (veh/h)		72			95							
Peak-Hour Factor, PHF		0.90	0.90		0.90)		0.90	0.90		0	.90
Hourly Flow Rate, HFR (veh/h)		80	0		105			0	0			0
Percent Heavy Vehicles		2	0		2			0	0			0
Percent Grade (%)			0						0			
Flared Approach			N						N			
Storage			0						0			
RT Channelized					0							0
Lanes		0	0		0			0	0			0
Configuration	1	-	LR									-
Delay, Queue Length, a	and L	evel of Se					<u>' </u>					
Approach		thbound	Southbound	d	١	Westb	ound		[Eastbou	nd	
Movement		1	4		7	8		9	10	11		12
Lane Configuration			LT	<u> </u>						LR	\neg	<u> </u>
v (veh/h)			26							185	\neg	
C (m) (veh/h)			1504							921		
v/c			0.02	\dashv				-	-	0.20		
95% queue length			0.05			<u> </u>			-	0.75		
Control Delay (s/veh)			7.4	ļ						9.9		
LOS			Α							A		
Approach Delay (s/veh)										9.9		
Approach LOS			-							Α		

		TW	0-	WAY STOP	СО	NTR	OL	SUM	MAI	RY					
General Informatio	n				(Site I	nfo	rmati	on						
Analyst		SKB			$\neg \llbracket$	Interse	ectio	n n					e Ro	l @ l-4	0 WB
Agency/Co.		TDOT/Tra	ans	Svstems	— <u> </u>						Ran				
Date Performed		04/18/20			115	Jurisdi						wood	Col	ınty	
Analysis Time Period		AM Peak		eriod		Analys	sis Y	rear			201	4			
	.i (i	•													
Project Description Ex East/West Street: I-40			าร		I _N	Jorth/9	Sout	th Ctro	a+: /	Jonala	illo D	ood			
Intersection Orientation:								th Stree			ille K	oau			
						Study I	en	ou (IIIs). U	.20					
Vehicle Volumes a Major Street	na A	ajustme	nı	Northbound				1			Sou	ıthbou	ınd		
Movement	_	1		2	$\overline{}$	3			4		T 300	5	ina	1	6
MOVEMENT	╅	<u> </u>	\dashv	<u>2</u> 	╁	R		_	L			T		+	R
Volume (veh/h)		104	┪	69	╫	- 11						16			95
Peak-Hour Factor, PHF	\dashv	0.90	┪	0.90	+	0.90)		0.90)		0.90			0.90
Hourly Flow Rate, HFR (veh/h)		115		76		0			0			17		1	105
Percent Heavy Vehicles		2			\top				3						
Median Type						Ur	ndivide	d							
RT Channelized						0									0
Lanes	1	0	\exists	1	╅	0			0			1			0
Configuration		LT	П		+										TR
Upstream Signal			П	0	+							0			
Minor Street			=	Eastbound				<u> </u>			۱ ۱۸۷۵	stbou	nd	<u>'</u>	
Movement	+	7		8	Т	9			10)	Τ	11		Τ	12
Movement		i	П	T	+-	R			L			T			R
Volume (veh/h)	_		┪		╫				20			-			19
Peak-Hour Factor, PHF		0.90		0.90	1	0.90)		0.90			0.90			0.90
Hourly Flow Rate, HFR (veh/h)		0		0		0			22			0			21
Percent Heavy Vehicles		3		0	1	3			2			0			2
Percent Grade (%)				0								0			
Flared Approach				N	П							N			
Storage	_		\neg	0	+							0			
RT Channelized	╁		\dashv		╁	0		_						\vdash	0
Lanes	+	0	\dashv	0	╫	0			0			0		\vdash	0
Configuration	╅		ᅱ	0	╫			_				LR		\vdash	
Delay, Queue Length,	and L	oval of Sa)rv	vice	<u> </u>			ļ				LIX			
Approach		hbound	1	Southbound	1		Mes	stbound	1		Π	F	actl	oound	
Movement	14010	1	H	4	 	7	I	8	1	9	1	0		11	12
Lane Configuration		LT		-		<u>'</u>		LR		3	'	U		11	12
v (veh/h)		115					_	43							
C (m) (veh/h)		465	├				_	43 723	╁		-		_		
v/c		0.08					_		╁						<u> </u>
							_	0.06	╀						
95% queue length		0.26					_	0.19	_		 				
Control Delay (s/veh)		7.7	<u> </u>				1	10.3			<u> </u>				
LOS		Α						В							
Approach Delay (s/veh)						1	10.3								
Approach LOS								В							

	TW	10-	WAY STOP	CONTR	OL S	UMI	MARY				
General Information				Site I							
Analyst	SKB			Interse	ection			Dancyville Ramps	e Rd	@ I-40) WB
Agency/Co.	TDOT/T		Systems	Jurisdi	ction			Haywood	Соц	ntv	
Date Performed	04/18/20			— Analys		ar		2014	Cou	ity	
Analysis Time Period	PM Pear	k Pe	eriod			<u> </u>					
Project Description Ex	kistina Conditio	ns									
East/West Street: I-40				North/S	South	Stree	t: Dancyv	rille Road			
Intersection Orientation:	North-South			Study I	Period	l (hrs)	: 0.25				
Vehicle Volumes ar	nd Adjustm	ent	ts								
Major Street			Northbound					Southbou	ınd		
Movement	1		2	3			4	5			6
	L		Т	R		┞	L	Т			R
Volume (veh/h)	63	_	79			—		33			41
Peak-Hour Factor, PHF	0.90	-	0.90	0.90		-	0.90	0.90		C).90
Hourly Flow Rate, HFR (veh/h)	70		87	0			0	36			4 5
Percent Heavy Vehicles	2	\dashv					3				
Median Type	1		ļ		Und	ivided	1				
RT Channelized	1			0							0
Lanes	0		1	0			0	1			0
Configuration	LT			1							TR
Upstream Signal	1		0					0			
Minor Street	İ		Eastbound			ĺ		Westbou	nd		
Movement	7		8	9			10	11			12
	L		Т	R			L	Т			R
Volume (veh/h)	1						25				16
Peak-Hour Factor, PHF	0.90		0.90	0.90)		0.90	0.90		С	.90
Hourly Flow Rate, HFR (veh/h)	0		0	0			27	0			17
Percent Heavy Vehicles	3		0	3			2	0			2
Percent Grade (%)			0					0			
Flared Approach			N					N			
Storage			0					0			
RT Channelized				0				ĺ			0
Lanes	0		0	0			0	0			0
Configuration								LR			
Delay, Queue Length, a	and Level of S	erv	ice								
Approach	Northbound		Southbound	,	Westb	ound		E	astb	ound	
Movement	1	十	4	7	8	3	9	10	1	1	12
Lane Configuration	LT	\top			LF	₹					
v (veh/h)	70	十			44						
C (m) (veh/h)	1517	╁			76						
v/c	0.05	\top			0.0						
95% queue length	0.15	+			0.1			 	 		
Control Delay (s/veh)	7.5	+			10.						
		+							- - 		
LOS	Α	╁			E				<u> </u>		
Approach Delay (s/veh)		╀			10						
Approach LOS					Е	}					

		TW	O-W	AY STOP	CO	NTR	OL S	UMI	MARY					
General Informatio	n				S	Site I	nforn	natio	on					
Analyst		SKB			$\neg \Gamma$	nterse	ection					e Rd (@ <i>I-4</i> () EB
Agency/Co.		TDOT/Tra	anSv	stems	╗					Ram				
Date Performed		04/18/201			111	Jurisdi						Coun	ty	
Analysis Time Period		AM Peak		od	— <i>-</i>	Analys	sis Yea	ar		2034				
		0 1'''												
Project Description Ex East/West Street: I-40		Condition	าร		lN	lorth/9	South	Ctroo	t: Danau	illo Do	-d			
Intersection Orientation:									t: <i>Dancy\</i>): 0.25	rille Rua	1U			
			n40			ituuy i	enou	(1113)	1. 0.20					
Vehicle Volumes and Major Street	na A	ajustme		Northbound				1		South	hou	ınd		
Movement	+	1	- '	2	1	3		_	4	T	5	П		6
Movement	╁	_	\dashv	<u>2</u>	╁	R		┢	L		T	$\overline{}$		R
Volume (veh/h)	\top		╁	149		21		 	22		. 32			11
Peak-Hour Factor, PHF	\top	0.90	\dashv	0.90		0.90)		0.90		.90	$\neg \uparrow$	- 0	0.90
Hourly Flow Rate, HFR (veh/h)		0		165		23			24		35			0
Percent Heavy Vehicles		0							2					
Median Type			-		,		Undi	vided	1					
RT Channelized						0								0
Lanes		0		1		0			0		1			0
Configuration						TR			LT					
Upstream Signal				0							0			
Minor Street			,	Eastbound						West	tbou	nd		
Movement		7		8		9			10	1	11			12
		L		Т		R			L		Т			R
Volume (veh/h)		63				61								
Peak-Hour Factor, PHF		0.90		0.90		0.90)		0.90	0.	.90		C).90
Hourly Flow Rate, HFR (veh/h)		70		0		67			0		0			0
Percent Heavy Vehicles		2		0		2			0		0			0
Percent Grade (%)				0							0			
Flared Approach				Ν							N			
Storage				0							0			
RT Channelized						0								0
Lanes		0	$\neg \vdash$	0		0			0		0			0
Configuration			$\neg \vdash$	LR						ĺ				
Delay, Queue Length, a	and Lo	evel of Se	rvic	e										
Approach		hbound	ir -	uthbound		,	Westb	ound			E	astbo	und	
Movement		1		4		7	8	3	9	10		11	1	12
Lane Configuration				LT								LF		
v (veh/h)				24								13		
C (m) (veh/h)			 	1386								84		
v/c			 	0.02								0.1		
95% queue length			<u> </u>	0.05								0.5		
Control Delay (s/veh)			<u> </u>	7.6								10.		
LOS			<u> </u>	Α	<u> </u>							В		
Approach Delay (s/veh)												10.1	1	
Approach LOS												В		

		TW	O-W	AY STOP	CON	NTR	OL S	SUMI	MARY					
General Informatio	n				S	ite lı	nfor	mati	on					
Analyst		SKB				nterse	ection					e Rd	@ 1-40) EB
Agency/Co.		TDOT/Tra	anSy	stems		'!'	-4:			Ram				
Date Performed		04/18/20			- 11 -	urisdi						Cou	nty	
Analysis Time Period		PM Peak	Peri	od		naiys	is Ye	ar		2034				
Project Description Ex	vistina	a Condition	20											
East/West Street: I-40			13		ΙΝ	orth/S	South	Stree	t: Dancy	ille Ro	ad			
Intersection Orientation:): 0.25	1110 7 101				
Vehicle Volumes a	nd A	diustme	nts											
Major Street	<u> </u>	ajaomi		Northbound				Τ		Soutl	hbou	ınd		
Movement		1		2		3			4	1	5			6
		L		T		R			L		Т			R
Volume (veh/h)				87		22			36		50			
Peak-Hour Factor, PHF		0.90	_	0.90		0.90)	╄	0.90	0	.90).90
Hourly Flow Rate, HFR (veh/h)		0		96		24			40	,	55			0
Percent Heavy Vehicles		0							2					
Median Type							Unc	livided	1	-				
RT Channelized						0								0
Lanes		0		1		0			0		1			0
Configuration						TR			LT					
Upstream Signal				0							0			
Minor Street				Eastbound						Wes	tbou	nd		
Movement		7		8		9			10		11			12
		L		Т		R			L		Т			R
Volume (veh/h)		83				114								
Peak-Hour Factor, PHF		0.90	_	0.90		0.90)	ļ	0.90	0	.90			0.90
Hourly Flow Rate, HFR (veh/h)		92		0		126			0		0			0
Percent Heavy Vehicles		2		0		2			0		0			0
Percent Grade (%)				0							0			
Flared Approach				Ν							Ν			
Storage				0							0			
RT Channelized						0								0
Lanes		0		0		0			0		0			0
Configuration				LR										
Delay, Queue Length, a	and L	evel of Se	ervic	е										
Approach	Nor	thbound	So	uthbound		1	Westl	oound			E	Eastb	ound	
Movement		1		4	7	7		8	9	10)	1	1	12
Lane Configuration				LT								L	R	
v (veh/h)				40								21	18	
C (m) (veh/h)				1468							867		67	
v/c				0.03								0.2		
95% queue length			\vdash	0.08	<u> </u>		\vdash						20	
Control Delay (s/veh)				7.5			\vdash						0.5	
LOS			_	A A	 		\vdash					E		
			_				<u> </u>		<u> </u>			10.		
Approach LOS			<u> </u>							<u> </u>				
Approach LOS										<u> </u>		В	i	

		TW	O-	WAY STOP	СО	NTR	0	L SU	JMN	/IARY					
General Information	<u>1</u>				5	Site II	ní	form	atio	n					
Analyst		SKB			٦ĺ٦	nterse	20	tion					e Ra	l @ l-4	0 WB
Agency/Co.		TDOT/Tra	ans	Systems								mps			
Date Performed		04/18/201		Systems	1115	Jurisdi						ywood	l Cοι	ınty	
Analysis Time Period		AM Peak		eriod		Analys	Sis	s Year	•		203	34			
Project Description Ex East/West Street: I-40 I			s		- In	lorth/C	-	outh C	troo	t. Donor	illo E	Pood			
Intersection Orientation:										t: <i>Dancy\</i> : 0.25	/IIIe R	toau			
Vehicle Volumes ar			nt	· c		rtady i		crioa ((1113)	. 0.20					
Major Street	T A	ujusiiile	111	Northbound				Т			Soi	uthbou	ınd		
Movement	+	1		2	Т	3				4	T	5		1	6
		Ĺ	┪	T		R				L		T			R
Volume (veh/h)		124	┪	88								24			110
Peak-Hour Factor, PHF	1	0.90	ヿ	0.90	1	0.90)			0.90		0.90		+	0.90
Hourly Flow Rate, HFR	ĺ	137	ヿ	97		0				0		26			122
(veh/h)			4								<u> </u>				
Percent Heavy Vehicles	-	2						,, ,,	. ,	3					
Median Type	_						Undiv	idea		т —			1		
RT Channelized			4	,		0									0
Lanes		0	4	1	_	0				0	<u> </u>	1			0
Configuration		LT	_								<u> </u>			<u> </u>	TR
Upstream Signal				0								0			
Minor Street				Eastbound							We	estbou	nd		
Movement		7	Ц	8		9				10		11			12
		L		Т		R				L		Т			R
Volume (veh/h)										30					28
Peak-Hour Factor, PHF		0.90		0.90		0.90	<u> </u>			0.90	<u> </u>	0.90		(0.90
Hourly Flow Rate, HFR (veh/h)		0		0		0				33		0			31
Percent Heavy Vehicles		3		0		3				2		0			2
Percent Grade (%)				0								0			
Flared Approach				N								Ν			
Storage				0								0			
RT Channelized			ヿ			0									0
Lanes	1	0	┪	0	1	0				0		0			0
Configuration	1		╗		1							LR			
Delay, Queue Length, a	nd L	evel of Se	rv	ice							•			•	
Approach		hbound		Southbound		\	W	/estbo	und				Easth	oound	
Movement		1		4		7	T	8		9	 	10	T	11	12
Lane Configuration		LT		· ·		•	t	LR						••	- '-
v (veh/h)		137					╁	64	\dashv		\vdash				
		434					╀		.		╁				
C (m) (veh/h)							╀	657			├		├─		
v/c		0.10					Ļ	0.10			<u> </u>		<u> </u>		
95% queue length		0.32					Ļ	0.32			<u> </u>				
Control Delay (s/veh)		7.8					L	11.1							
LOS		Α	L					В]						
Approach Delay (s/veh)								11.1							
Approach LOS								В							

	TV	/O·	-WAY STOP	CONTR	OL	SUMN	MARY				
General Informatio				Site I							
Analyst	SKB			Interse	ectio	n		Dancyville Ramps	e Rd	@ I-40) WB
Agency/Co.			Systems	Jurisd	iction	າ		Haywood	Соц	ntv	
Date Performed	04/18/20			Analys				2034	004	nty .	
Analysis Time Period	PM Pea	k P	eriod								
Project Description Ex	ristina Conditio	ns									
East/West Street: I-40				North/S	South	h Stree	t: Dancyv	rille Road			
Intersection Orientation:	North-South	1		Study	Peric	od (hrs)	: 0.25				
Vehicle Volumes a	nd Adjustm	en	ts								
Major Street			Northbound	-				Southbou	ınd		
Movement	1		2	3			4	5			6
	L		Т	R			L	Т			R
Volume (veh/h)	80		90	0.00			0.00	49			47
Peak-Hour Factor, PHF	0.90		0.90	0.90	<u>, </u>	+	0.90	0.90			0.90
Hourly Flow Rate, HFR (veh/h)	88		100	0			0	54			52
Percent Heavy Vehicles	2			 			3				
Median Type	1				Un	divided	I				
RT Channelized				0							0
Lanes	0		1	0		1	0	1			0
Configuration	LT		1	1							TR
Upstream Signal	1		0	1				0			
Minor Street			Eastbound	,				Westbou	nd		
Movement	7		8	9			10	11			12
	L		Т	R			L	Т			R
Volume (veh/h)				1			37				24
Peak-Hour Factor, PHF	0.90		0.90	0.90)		0.90	0.90		С	.90
Hourly Flow Rate, HFR (veh/h)	0		0	0			41	0			26
Percent Heavy Vehicles	3		0	3			2	0			2
Percent Grade (%)			0					0			
Flared Approach			N					N			
Storage			0					0			
RT Channelized				0							0
Lanes	0		0	0			0	0			0
Configuration								LR			
Delay, Queue Length, a	and Level of S	er\	/ice	,		,		·			
Approach	Northbound		Southbound	,	Wes	tbound		E	astb	ound	
Movement	1	T	4	7		8	9	10	1	11	12
Lane Configuration	LT	T				LR					
v (veh/h)	88	╅				67					
C (m) (veh/h)	1485	╅			├	705		<u> </u>			
v/c	0.06	十			-	0.10		†			
95% queue length	0.19	╁			├	0.31		 	 		
Control Delay (s/veh)	7.6	╁			-	0.6		 			
		╀			├			<u> </u>	- - 		
LOS	Α	+				В		-	<u> </u>		
Approach Delay (s/veh)		\bot				0.6		<u> </u>			
Approach LOS						В					

Signalized Intersections Highway Capacity Software Computer Printouts

SHORT REPORT **General Information** Site Information Analyst SKB SR 222 @ I-40 EB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2014 Time Period AM Peak Period Volume and Timing Input

volume and Timing Input												
		EB	_		WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes	2		1					2	1	1	2	
Lane Group	L		R					T	R	L	T	
Volume (vph)	581		134					217	114	118	208	
% Heavy Vehicles	10		48					48	48	10	10	
PHF	0.90		0.90					0.90	0.90	0.90	0.90	
Pretimed/Actuated (P/A)	Α		Α					Α	Α	Α	Α	
Startup Lost Time	2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green	2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type	3		3					3	3	3	3	
Unit Extension	3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume	0	0	0	0	0		0	0	0	0	0	
Lane Width	12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking	Ν	0	Ν	Ν	0	N	Ν	0	Ν	Ν	0	Ν
Parking/Hour												
Bus Stops/Hour	0		0					0	0	0	0	
Minimum Pedestrian Time		3.2			3.2			3.2			3.2	
Phasing EB Only	02	(03	04	ļ	SB O	าly	NS Peri	m	07	0	8
Timing $G = 25.0$ G		G =		G =		G = 8.	0	G = 23.0			G =	
Y = 5 Y		Y =		Y =		Y = 4		Y = 5	Y =		Y =	
Duration of Analysis (hrs) = 0 .	25							Cycle Le	ength C =	= <i>70.0</i>		

Baration of 7 that you (1110)	0.20				10,0.0 20.	<u>.g c</u>			
Lane Group Capacity	y, Control I	Delay, and	LOS Determ	ninatio	n				
		EB	WB		NB			SB	
Adjusted Flow Rate	646	149			241	127	131	231	
Lane Group Capacity	1138	390			803	358	551	1645	
v/c Ratio	0.57	0.38			0.30	0.35	0.24	0.14	
Green Ratio	0.36	0.36			0.33	0.33	0.51	0.50	
Uniform Delay d ₁	18.1	16.7			17.5	17.9	9.1	9.4	
Delay Factor k	0.16	0.11			0.11	0.11	0.11	0.11	
Incremental Delay d ₂	0.7	0.6			0.2	0.6	0.2	0.0	
PF Factor	1.000	1.000			1.000	1.000	1.000	1.000	
Control Delay	18.8	17.4			17.7	18.5	9.3	9.5	
Lane Group LOS	В	В			В	В	Α	Α	
Approach Delay	1	18.5			18.0			9.4	
Approach LOS		В			В			Α	
Intersection Delay	1	16.2	l	ntersect	tion LOS			В	

General Information

Project Description Traditional Diamond

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	646		149					241	127	131	231	
Satflow/Lane	1641		1091					1283	1091	1071	1727	
Capacity/Lane Group	1138		390					803	358	551	1645	
Flow Ratio	0.2		0.1					0.1	0.1	0.1	0.1	
v/c Ratio	0.57		0.38					0.30	0.35	0.24	0.14	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	5.2		2.2					1.8	1.9	1.3	1.3	
kв	0.4		0.3					0.4	0.3	0.4	0.5	
Q2	0.6		0.2					0.2	0.2	0.1	0.1	
Q Average	5.8		2.4					2.0	2.1	1.4	1.4	
Percentile Back of Queu	e (95th	n perc	entile	<u></u>)								
fB%	1.9		2.0					2.0	2.0	2.1	2.1	
Back of Queue	11.2		4.8					4.0	4.2	2.9	2.8	
Queue Storage Ratio	-			-	-		-			•		
Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:15 PM

SHORT REPORT **General Information** Site Information SKB Analyst SR 222 @ I-40 EB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction Analysis Year 04/18/2011 Fayette County Performed 2014 Time Period PM Peak Period Volume and Timing Input

			EB				WB			NB				SB	
		LT		TH	RT	LT	TH	RT	LT	TH	R	T	LT	TH	RT
Number of L	anes	2			1					2	1		1	2	
Lane Group		L			R					T	R		L	T	
Volume (vph)	271			126					240	14	2	225	159	
% Heavy Ve	hicles	10			48					48	48	3	10	10	
PHF		0.90			0.90					0.90	0.9	0	0.90	0.90	
Pretimed/Act	tuated (P/A)	Α			Α					Α	Α		Α	Α	
Startup Lost	Time	2.0			2.0					2.0	2.0)	2.0	2.0	
Extension of	Effective Gree	en 2.0			2.0					2.0	2.0)	2.0	2.0	
Arrival Type		3			3					3	3		3	3	
Unit Extension	on	3.0			3.0					3.0	3.0)	3.0	3.0	
Ped/Bike/RT	OR Volume	0		0	0	0	0		0	0	0		0	0	
Lane Width		12.0			12.0					12.0	12.	.0	12.0	12.0	
Parking/Grad	de/Parking	N		0	Ν	N	0	N	N	0	N	'	N	0	N
Parking/Hou	r														
Bus Stops/H	our	0			0					0	0)	0	0	
Minimum Pe	destrian Time		(3.2			3.2			3.2				3.2	
Phasing	EB Only	02		`)3	04	1	SB O	nly	NS Perr	m		07	0	8
Timing	G = 23.0	G =		G =		G =		G = 8.	0	G = 25.0	0	G=		G =	
7 iiiiiiig	Y = 5	Y =		Y =	Y = '			Y = 4		Y = 5		Y =	70.0	Y =	

Cycle Length C = Duration of Analysis (brs) = 0.25

Duration of Analysis (hrs)	= 0.25			Cycle Ler	igth C =	70.0		
Lane Group Capacit	y, Control	Delay, and	LOS Determina	ntion				
		EB	WB	NB			SB	
Adjusted Flow Rate	301	140		267	158	250	177	
Lane Group Capacity	1047	358		873	390	568	1738	
v/c Ratio	0.29	0.39		0.31	0.41	0.44	0.10	
Green Ratio	0.33	0.33		0.36	0.36	0.54	0.53	
Uniform Delay d ₁	17.4	18.1		16.2	16.9	8.8	8.2	
Delay Factor k	0.11	0.11		0.11	0.11	0.11	0.11	
Incremental Delay d ₂	0.2	0.7		0.2	0.7	0.5	0.0	
PF Factor	1.000	1.000		1.000	1.000	1.000	1.000	
Control Delay	17.6	18.8		16.4	17.6	9.3	8.2	
Lane Group LOS	В	В		В	В	Α	Α	
Approach Delay		18.0		16.9			8.9	
Approach LOS		В		В			Α	
Intersection Delay		14.6	Inter	section LOS			В	

General Information

Project Description Traditional Diamond

Average Back of Queue

Lane Group	LT TH RT											
Lane Group			RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	301		140					267	158	250	177	
Satflow/Lane	1641		1091					1283	1091	1045	1727	
Capacity/Lane Group	1047		358					873	390	568	1738	
Flow Ratio	0.1		0.1					0.1	0.1	0.2	0.1	
v/c Ratio	0.29		0.39					0.31	0.41	0.44	0.10	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	2.2		2.1					2.0	2.3	2.3	0.9	
kв	0.4		0.3					0.4	0.3	0.4	0.6	
Q2	0.2		0.2					0.2	0.2	0.3	0.1	
Q Average	2.4		2.3					2.1	2.5	2.7	1.0	
Percentile Back of Queue	e (95th	perc	entile))	Į.							
fB%	2.0		2.0					2.0	2.0	2.0	2.1	
Back of Queue	4.8		4.7					4.3	5.1	5.4	2.0	
Queue Storage Ratio												
Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:19 PM

SHORT REPORT **General Information** Site Information Analyst SKB SR 222 @ I-40 WB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2014 Time Period AM Peak Period

Volume and Timing Input												
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes				1		1	1	2			2	1
Lane Group				L		R	L	T			T	R
Volume (vph)				117		257	83	715			209	304
% Heavy Vehicles				48		10	48	48			10	10
PHF				0.90		0.90	0.90	0.90			0.90	0.90
Pretimed/Actuated (P/A)				Α		Α	Α	Α			Α	Α
Startup Lost Time				2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green				2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type				3		3	3	3			3	3
Unit Extension				3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume	0	0		0	0	0	0	0		0	0	0
Lane Width				12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking	N	0	N	N	0	N	N	0	N	N	0	N
Parking/Hour												
Bus Stops/Hour				0		0	0	0			0	0
Minimum Pedestrian Time		3.2			3.2			3.2			3.2	
Phasing WB Only	02	02 03)4	NB O	nly	NS Perm		07		08
Limina	i =					G = 8.		$\theta = 25.0$	G =		G =	
Y = 5 Y	Y =											
Duration of Analysis (hrs) = 0).25						10	ycle Len	gth C =	= 70.0)	

Lane Group Capacity, C	ontrol Delay	y, and	LOS [Detern	ninatio	n				
	EB			WB			NB		SB	
Adjusted Flow Rate			130		286	92	794		232	338
Lane Group Capacity			401		482	437	1292		1175	524
v/c Ratio			0.32		0.59	0.21	0.61		0.20	0.65
Green Ratio			0.33		0.33	0.54	0.53		0.36	0.36
Uniform Delay d ₁			17.7		19.6	8.0	11.5		15.6	18.8
Delay Factor k			0.11		0.18	0.11	0.20		0.11	0.22
Incremental Delay d ₂			0.5		2.0	0.2	0.9		0.1	2.7
PF Factor			1.000		1.000	1.000	1.000		1.000	1.000
Control Delay			18.1		21.6	8.2	12.4		15.6	21.5
Lane Group LOS			В		С	Α	В		В	С
Approach Delay			20.5			12.0		19.1		
Approach LOS			С				В		В	
Intersection Delay	16.0				ntersec	tion LO	S		В	

General Information

Project Description Traditional Diamond

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group				L		R	L	Τ			Τ	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				130		286	92	794			232	338
Satflow/Lane				1220		1468	806	1283			1727	1468
Capacity/Lane Group				401		482	437	1292			1175	524
Flow Ratio				0.1		0.2	0.1	0.3			0.1	0.2
v/c Ratio				0.32		0.59	0.21	0.61			0.20	0.65
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				1.9		4.6	0.8	5.7			1.6	5.5
kв				0.3		0.4	0.4	0.5			0.4	0.4
Q2				0.2		0.5	0.1	0.7			0.1	0.7
Q Average				2.1		5.2	0.9	6.4			1.7	6.2
Percentile Back of Queu	e (95t	h per	entile	e)	,					•		•
fB%				2.0		1.9	2.1	1.9			2.0	1.9
Back of Queue				4.2		10.1	1.9	12.3			3.5	11.9
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:26 PM

SHORT REPORT **General Information** Site Information SKB Analyst SR 222 @ I-40 WB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2014 Time Period PM Peak Period

Volume and Timing Inpu	ıt												
			EB			WB			NB			SB	
		LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes					1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					98		122	106	405			286	514
% Heavy Vehicles					48		10	48	48			10	10
PHF					0.90		0.90	0.90	0.90			0.90	0.90
Pretimed/Actuated (P/A)					Α		Α	Α	Α			Α	Α
Startup Lost Time					2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Gre	en			2.0		2.0	2.0	2.0			2.0	2.0	
Arrival Type					3		3	3	3			3	3
Unit Extension					3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking		Ν	0	N	N	0	N	N	0	Ν	Ν	0	N
Parking/Hour													
Bus Stops/Hour					0		0	0	0			0	0
Minimum Pedestrian Time	9		3.2			3.2			3.2			3.2	
Phasing WB Only		02 03			()4	NB O	nly	NS Perm		07		08
Timing $G = 15.0$	G =				G =		G = 8.		6 = 33.0	G =		G =	
Y = 5													
Duration of Analysis (hrs)	= 0.2	25						(ycie Len	gtn C =	= 70.0	1	

Lane Group Capacity, C	ontrol Delay	, and	LOS [Detern	ninatio	n				
	EB			WB			NB		SB	
Adjusted Flow Rate			109		136	118	450	3	318	571
Lane Group Capacity			261		315	490	1571	1	551	692
v/c Ratio			0.42		0.43	0.24	0.29	0	.21	0.83
Green Ratio			0.21		0.21	0.66	0.64	0	.47	0.47
Uniform Delay d ₁			23.7		23.8	4.7	5.5	1	0.8	16.0
Delay Factor k			0.11		0.11	0.11	0.11	0	.11	0.36
Incremental Delay d ₂			1.1		1.0	0.3	0.1		0.1	8.1
PF Factor			1.000		1.000	1.000	1.000	1.	.000	1.000
Control Delay			24.8		24.8	4.9	5.6	1	10.9	24.1
Lane Group LOS			С		С	Α	Α		В	С
Approach Delay			24.8			5.4	1	19.4		
Approach LOS			С				Α	-	В	
Intersection Delay	15.5		Interse			tion LO	S		В	

General Information

Project Description Traditional Diamond

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group				L		R	L	Τ			Τ	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				109		136	118	450			318	571
Satflow/Lane				1220		1468	747	1283			1727	1468
Capacity/Lane Group				261		315	490	1571			1551	692
Flow Ratio				0.1		0.1	0.2	0.2			0.1	0.4
v/c Ratio				0.42		0.43	0.24	0.29			0.21	0.83
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				1.8		2.3	0.8	2.0			1.9	9.6
kв				0.3		0.3	0.4	0.5			0.5	0.5
Q2				0.2		0.2	0.1	0.2			0.1	2.0
Q Average				2.0		2.5	0.9	2.2			2.0	11.6
Percentile Back of Queu	e (95t	h per	entile)	,	•				•		<u> </u>
fB%				2.0		2.0	2.1	2.0			2.0	1.8
Back of Queue				4.1		5.1	1.9	4.5			4.1	21.0
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:28 PM

SHORT REPORT Site Information General Information Analyst SKB Intersection SR 222 @ I-40 EB Ramps Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2034 Time Period AM Peak Period **Volume and Timing Input** WB ΕB NB SB LT TH RT LT TH RT LT TH RT LT TH RT Number of Lanes 2 1 2 1 2 L Lane Group R Т R L Τ Volume (vph) 586 168 222 155 120 246 10 48 48 10 10 % Heavy Vehicles 48 PHF 0.90 0.90 0.90 0.90 0.90 0.90 Pretimed/Actuated (P/A) Α Α Α Α Α Α Startup Lost Time 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green 2.0 2.0 2.0 2.0 2.0 2.0 3 3 Arrival Type 3 3 3 Unit Extension 3.0 3.0 3.0 3.0 3.0 3.0 Ped/Bike/RTOR Volume 0 0 0 0 0 0 0 0 0 0 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 Parking/Grade/Parking Ν 0 Ν Ν 0 Ν Ν 0 Ν Ν Parking/Hour

Minimum Pe	destrian Time		3.2	3.2		3.2		3.2	
Phasing	EB Only	02	03	04	SB Only	y NS Perm	07	30	3
Timing	G = 25.0	G =	G =	G =	G = 8.0	G = 23.0	G =	G =	
riming	Y = 5	Y =	Y =	Y =	Y = 4	Y = 5	Y =	Y =	
Duration of A	nalvsis (hrs) =	= 0.25				Cycle Lengt	th C = 70.0		

0

0

= = = = = = = = = = = = = = = = = = = =					- 7				
Lane Group Capacit	y, Contro	l Delay, and	LOS Detern	ninatio	n				
		EB	WB		NB			SB	
Adjusted Flow Rate	651	187			247	172	133	273	
Lane Group Capacity	1138	390			803	358	548	1645	
v/c Ratio	0.57	0.48			0.31	0.48	0.24	0.17	
Green Ratio	0.36	0.36			0.33	0.33	0.51	0.50	
Uniform Delay d ₁	18.2	17.5			17.6	18.7	9.1	9.5	
Delay Factor k	0.17	0.11			0.11	0.11	0.11	0.11	
Incremental Delay d ₂	0.7	0.9			0.2	1.0	0.2	0.0	
PF Factor	1.000	1.000			1.000	1.000	1.000	1.000	
Control Delay	18.9	18.4			17.8	19.8	9.3	9.6	
Lane Group LOS	В	В			В	В	Α	Α	
Approach Delay		18.8			18.6			9.5	
Approach LOS		В			В			Α	
Intersection Delay		16.5		ntersect	tion LOS			В	

Bus Stops/Hour

0

0

0

0

General Information

Project Description Traditional Diamond

Average Back of Queue

						1					
									ļ		
	TH	_	LT	TH	RT	LT	_		LT	_	RT
L		R					T	R	L	T	
0.0		0.0					0.0	0.0	0.0	0.0	
651		187					247	172	133	273	
1641		1091					1283	1091	1064	1727	
1138		390					803	358	548	1645	
0.2		0.2					0.1	0.2	0.1	0.1	
0.57		0.48					0.31	0.48	0.24	0.17	
1.000		1.000					1.000	1.000	1.000	1.000	
3		3					3	3	3	3	
1.00		1.00					1.00	1.00	1.00	1.00	
1.00		1.00					1.00	1.00	1.00	1.00	
5.3		2.8					1.9	2.7	1.3	1.5	
0.4		0.3					0.4	0.3	0.4	0.5	
0.6		0.3					0.2	0.3	0.1	0.1	
5.8		3.1					2.0	3.0	1.4	1.6	
e (95th	perd	entile)								
1.9		2.0					2.0	2.0	2.1	2.0	
11.3		6.3					4.1	5.9	2.9	3.3	
25.0		25.0					25.0	25.0	25.0	25.0	
0		0					0	0	0	0	
	651 1641 1138 0.2 0.57 1.000 3 1.00 1.00 5.3 0.4 0.6 5.8 e (95th 1.9 11.3	L 0.0 651 1641 1138 0.2 0.57 1.000 3 1.00 1.00 5.3 0.4 0.6 5.8 e (95th perc	LT TH RT L R 0.0 0.0 651 187 1641 1091 1138 390 0.2 0.2 0.57 0.48 1.000 1.000 3 3 1.00 1.00 5.3 2.8 0.4 0.3 0.6 0.3 5.8 3.1 e (95th percentile) 1.9 2.0 11.3 6.3	LT TH RT LT L R 0.0 0.0 651 187 187 187 1641 1091 1138 390 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.3 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.00	LT TH RT LT TH 0.0	LT TH RT LT TH RT 0.0	LT TH RT LT TH RT LT 0.0	LT TH RT LT TH RT LT TH 0.0 0.0 0.0 0.0 0.0 651 187 247 1641 1091 1283 1138 390 803 0.2 0.2 0.1 0.57 0.48 0.31 1.000 1.000 1.000 3 3 3 1.00 1.00 1.00 5.3 2.8 1.9 0.4 0.3 0.4 0.6 0.3 0.2 5.8 3.1 2.0 e (95th percentile) 1.9 2.0 2.0 11.3 6.3 4.1	LT TH RT LT TH RT LT TH RT 0.0 <	LT TH RT LT TH RT LT TH RT LT TH RT L 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.	LT TH RT LT TH RT LT TH RT LT TH RT LT TH LT TH LT TH L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T T R L T T R L T T R L T T R L T T R L T T R L T T R L T T R L T R L T R L T

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:29 PM

SHORT REPORT General Information Site Information Analyst SKB SR 222 @ I-40 EB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date 04/18/2011 Jurisdiction Fayette County Performed Analysis Year 2034 Time Period PM Peak Period **Volume and Timing Input** WB ΕB NB SB LT TH RT LT TH RT LT TH RT LT TH RT Number of Lanes 2 1 2 1 2 L Lane Group R Т R L Τ Volume (vph) 276 173 250 184 226 208 10 10 % Heavy Vehicles 48 48 48 10 PHF 0.90 0.90 0.90 0.90 0.90 0.90 Pretimed/Actuated (P/A) Α Α Α Α Α Α Startup Lost Time 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green 2.0 2.0 2.0 2.0 2.0 2.0 3 Arrival Type 3 3 3 3 Unit Extension 3.0 3.0 3.0 3.0 3.0 3.0 Ped/Bike/RTOR Volume 0 0 0 0 0 0 0 0 0 0

Lane Group Capacit	y, Control	Delay, and	LOS Detern	ninatio	n				
		EB	WB		NB			SB	
Adjusted Flow Rate	307	192			278	204	251	231	
Lane Group Capacity	1047	358			873	390	561	1738	
v/c Ratio	0.29	0.54			0.32	0.52	0.45	0.13	
Green Ratio	0.33	0.33			0.36	0.36	0.54	0.53	
Uniform Delay d ₁	17.5	19.2			16.3	17.8	8.8	8.4	
Delay Factor k	0.11	0.14			0.11	0.13	0.11	0.11	
Incremental Delay d ₂	0.2	1.6			0.2	1.3	0.6	0.0	
PF Factor	1.000	1.000			1.000	1.000	1.000	1.000	
Control Delay	17.6	20.8			16.5	19.1	9.4	8.4	
Lane Group LOS	В	С			В	В	Α	Α	
Approach Delay	1	18.8			17.6			8.9	
Approach LOS		В			В			Α	
Intersection Delay	1	15.2	ı	ntersec	tion LOS			В	

12.0

Ν

0

02

G =

Y =

0

3.2

G =

Y =

12.0

Ν

0

03

Ν

G =

<u>Y</u> =

0

3.2

04

Ν

SB Only

G = 8.0

Y = 4

Ν

Lane Width

Parking/Hour
Bus Stops/Hour

Phasing

Timing

Parking/Grade/Parking

Minimum Pedestrian Time

EB Only

G = 23.0

Y = 5

Duration of Analysis (hrs) = 0.25

12.0

0

0

3.2

NS Perm

G = 25.0

Y = 5

12.0

0

Cycle Length C = 70.0

12.0

Ν

0

07

G =

Y =

12.0

0

0

3.2

G =

Y =

80

Ν

General Information

Project Description Traditional Diamond

Average Back of Queue

	EB LT TH RT							NB			SB	
		TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L		R					T	R	L	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	307		192					278	204	251	231	
Satflow/Lane	1641		1091					1283	1091	1033	1727	
Capacity/Lane Group	1047		358					873	390	561	1738	
Flow Ratio	0.1		0.2					0.1	0.2	0.2	0.1	
v/c Ratio	0.29		0.54					0.32	0.52	0.45	0.13	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	2.3		3.0					2.1	3.1	2.4	1.2	
kв	0.4		0.3					0.4	0.3	0.4	0.6	
Q2	0.2		0.4					0.2	0.4	0.3	0.1	
Q Average	2.5		3.4					2.2	3.5	2.7	1.3	
Percentile Back of Queue	e (95th	perc	entile))	Į.			·!				
fB%	2.0		2.0					2.0	2.0	2.0	2.1	
Back of Queue	5.0		6.8					4.5	7.0	5.4	2.6	
Queue Storage Ratio										,		
Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:31 PM

SHORT REPORT **General Information** Site Information Analyst SKB SR 222 @ I-40 WB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2034 Time Period AM Peak Period

Volume and	Timing Input												
			EB			WB			NB			SB	
		LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of La	anes				1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph))				143		258	110	698			223	324
% Heavy Vel	nicles				48		10	48	48			10	10
PHF					0.90		0.90	0.90	0.90			0.90	0.90
Pretimed/Act	uated (P/A)				Α		Α	Α	Α			Α	Α
Startup Lost	Time				2.0		2.0	2.0	2.0			2.0	2.0
Extension of	Effective Green				2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension	on				3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RT	OR Volume	0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grad	de/Parking	N	0	N	N	0	N	N	0	Ν	N	0	N
Parking/Hour	ſ												
Bus Stops/Ho	our				0		0	0	0			0	0
Minimum Ped	destrian Time		3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03)4	NB O	nly	NS Perm		07		08
Timing	G = 23.0 G:		G :		G =		G = 8.		S = 25.0	G =		G =	
_	Y = 5 Y =		Y =	•	Y =		Y = 4		′ = 5	Y =		Y =	
Duration of A	nalysis (hrs) = 0.2	25							Cycle Len	gth C =	= 70.0	<u> </u>	

Lane Group Capacity, C	ontrol	Delay	, and	LOS [Detern	ninatio	n				
		EB			WB			NB		SB	
Adjusted Flow Rate				159		287	122	776		248	360
Lane Group Capacity				401		482	430	1292		1175	524
v/c Ratio				0.40		0.60	0.28	0.60		0.21	0.69
Green Ratio				0.33		0.33	0.54	0.53		0.36	0.36
Uniform Delay d ₁				18.1		19.6	8.2	11.4		15.6	19.2
Delay Factor k				0.11		0.18	0.11	0.19		0.11	0.26
Incremental Delay d ₂				0.6		2.0	0.4	0.8		0.1	3.8
PF Factor				1.000		1.000	1.000	1.000		1.000	1.000
Control Delay				18.8		21.6	8.6	12.2		15.7	22.9
Lane Group LOS				В		С	Α	В		В	С
Approach Delay					20.6			11.7		20.0	
Approach LOS					С			В		В	
Intersection Delay		16.3				ntersec	tion LO	S		В	

General Information

Project Description Traditional Diamond

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group				L		R	L	Τ			Τ	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				159		287	122	776			248	360
Satflow/Lane				1220		1468	792	1283			1727	1468
Capacity/Lane Group				401		482	430	1292			1175	524
Flow Ratio				0.1		0.2	0.2	0.3			0.1	0.2
v/c Ratio				0.40		0.60	0.28	0.60			0.21	0.69
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				2.4		4.7	1.1	5.5			1.8	6.0
kв				0.3		0.4	0.4	0.5			0.4	0.4
Q2				0.2		0.6	0.1	0.7			0.1	0.8
Q Average				2.6		5.2	1.3	6.2			1.9	6.8
Percentile Back of Queu	e (95t	h per	entile	e)		•				•		
fB%				2.0		1.9	2.1	1.9			2.0	1.9
Back of Queue				5.3		10.2	2.6	11.9			3.8	13.0
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:33 PM

SHORT REPORT **General Information** Site Information SKB Analyst SR 222 @ I-40 WB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2034 Time Period PM Peak Period

Volume and T	iming Input												
			EB			WB			NB			SB	
		LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lan	nes				1		1	1	2			2	1
Lane Group					L		R	L	T			T	R
Volume (vph)					132		125	130	396			302	520
% Heavy Vehic	cles				48		10	48	48			10	10
PHF					0.90		0.90	0.90	0.90			0.90	0.90
Pretimed/Actua	ated (P/A)				Α		Α	Α	Α			Α	Α
Startup Lost Ti	ime				2.0		2.0	2.0	2.0			2.0	2.0
Extension of E	ffective Green				2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type					3		3	3	3			3	3
Unit Extension	1				3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTO	R Volume	0	0		0	0	0	0	0		0	0	0
Lane Width					12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade	/Parking	Ν	0	Ν	N	0	N	N	0	Ν	N	0	N
Parking/Hour													
Bus Stops/Hou	ır				0		0	0	0			0	0
Minimum Pede	estrian Time		3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03)4	NB O	nly	NS Perm		07		80
IIImina 🗀	G = 16.0 G:		G :		G =		G = 8.		6 = 32.0	G =		G =	
Y	Y = 5 Y =		Y =		Y =		Y = 4		′ = 5	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	25							ycle Len	gth C =	= 70.0)	

Lane Group Capacity, C	ontrol	Delay	, and	LOS [Detern	ninatio	n				
		EB			WB			NB		SB	
Adjusted Flow Rate				147		139	144	440		336	578
Lane Group Capacity				279		336	470	1536		1504	671
v/c Ratio				0.53		0.41	0.31	0.29		0.22	0.86
Green Ratio				0.23		0.23	0.64	0.63		0.46	0.46
Uniform Delay d ₁				23.7		23.0	5.2	5.9		11.5	17.0
Delay Factor k				0.13		0.11	0.11	0.11		0.11	0.39
Incremental Delay d ₂				1.9		0.8	0.4	0.1		0.1	11.1
PF Factor				1.000		1.000	1.000	1.000		1.000	1.000
Control Delay				25.5		23.8	5.6	6.0		11.6	28.1
Lane Group LOS				С		С	Α	Α		В	С
Approach Delay	pproach Delay				24.7			5.9		22.0	
Approach LOS					С			Α		С	
Intersection Delay		17.2				ntersec	tion LO	S		В	

General Information

Project Description Traditional Diamond

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group				L		R	L	T			Τ	R
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				147		139	144	440			336	578
Satflow/Lane				1220		1468	732	1283			1727	1468
Capacity/Lane Group				279		336	470	1536			1504	671
Flow Ratio				0.1		0.1	0.2	0.2			0.1	0.4
v/c Ratio				0.53		0.41	0.31	0.29			0.22	0.86
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				2.5		2.3	1.0	2.0			2.1	10.1
kв				0.3		0.3	0.4	0.5			0.5	0.5
Q2				0.3		0.2	0.2	0.2			0.1	2.4
Q Average				2.8		2.5	1.2	2.2			2.2	12.5
Percentile Back of Queu	e (95t	h perd	entil	e)	,				•			•
fB%				2.0		2.0	2.1	2.0			2.0	1.8
Back of Queue				5.7		5.1	2.5	4.6			4.5	22.4
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

- ...

Generated: 4/20/2011 3:35 PM

SHORT REPORT General Information Site Information Analyst SKB SR 222 @ I-40 EB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction Analysis Year 04/18/2011 Fayette County Performed 2014 Time Period AM Peak Period

Volume and	d Timing Inpu	t													
				EB	-		WI				NB			SB	
			LT	TH	RT	LT	T	H	RT	LT	TH	RT	LT	TH	RT
Number of L	anes		2		2	2					2				
Lane Group			L		R	L					T				
Volume (vpł	າ)		581		134	326					331				
% Heavy Ve	hicles		10		4 8	10					48				
PHF			0.90		0.90	0.90					0.90				
Pretimed/Ac	tuated (P/A)		Α			Α					Α				
Startup Lost	Time		2.0		2.0	2.0					2.0				
Extension of	f Effective Gre	en	2.0		2.0	2.0					2.0				
Arrival Type			3		3	3					3				
Unit Extensi	on		3.0		3.0	3.0					3.0				
Ped/Bike/R1	TOR Volume		0	0	0	0	0			0	0		0	0	
Lane Width			12.0		12.0	12.0					12.0				
Parking/Gra	de/Parking		N	0	Ν	N	0		Ν	Ν	0	Ν	Ν	0	Ν
Parking/Hou	ır														
Bus Stops/H	lour		0		0	0					0				
Minimum Pe	edestrian Time			3.2			3.2	2			3.2			3.2	
Phasing	Excl. Left	()2	0	3	04		N	B Only		06	()7	0	8
Timing	G = 30.0	G =		G =		G =			= 30.0			G =		G =	
	Y = 5	Y =		Y =		Y =		Υ =	= 5	Υ =		Y =		Y =	
Duration of A	uration of Analysis (hrs) = 0.25									Cy	cle Leng	th C =	70.0		

Duration of Analysis (1113) = 0	Coup Capacity, Control Delay, and LOS Determination EB WB Flow Rate 646 149 362 up Capacity 1366 828 1366 up Capacity 0.47 0.18 0.27 dio 0.43 0.43 0.43 elay d ₁ 14.3 12.4 12.9 tor k 0.11 0.11 0.11				Cycle Le	ingui O –	70.0				
Lane Group Capacity,	Contro	Dela	y, and	LOS I	Detern	ninatio	n				
		EB			WB		NB			SB	
Adjusted Flow Rate	646		149	362			368				
Lane Group Capacity	1366		828	1366			1047				
v/c Ratio	0.47		0.18	0.27			0.35				
Green Ratio	0.43		0.43	0.43			0.43				
Uniform Delay d ₁	14.3		12.4	+ + + + + +		13.5					
Delay Factor k	0.11		0.11	+ + +		0.11					
Incremental Delay d ₂	0.3		0.1	0.1			0.2				
PF Factor	1.000		1.000	1.000			1.000				
Control Delay	14.6		12.5	13.0			13.7				
Lane Group LOS	В		В	В			В				
Approach Delay		14.2			13.0		13.7				
Approach LOS		В			В		В				
Intersection Delay		13.8			I	ntersec	tion LOS	368 1047 0.35 0.43 13.5 0.11 0.2 1.000 13.7 B		В	

General Information

Average Back of Queue

Average back of Queue		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L		R	L				T				
Initial Queue/Lane	0.0		0.0	0.0				0.0				
Flow Rate/Lane Group	646		149	362				368				
Satflow/Lane	1641		1091	1641				1283				
Capacity/Lane Group	1366		828	1366				1047				
Flow Ratio	0.2		0.1	0.1				0.2				
v/c Ratio	0.47		0.18	0.27				0.35				
I Factor	1.000		1.000	1.000				1.000				
Arrival Type	3		3	3				3				
Platoon Ratio	1.00		1.00	1.00				1.00				
PF Factor	1.00		1.00	1.00				1.00				
Q1	4.6		1.0	2.3				2.5				
kв	0.5		0.4	0.5				0.4				
Q2	0.4		0.1	0.2				0.2				
Q Average	5.1		1.1	2.5				2.7				
Percentile Back of Queu	e (95th	perc	entile))	,		•	•				,
fB%	2.0		2.1	2.0				2.0				
Back of Queue	9.9		2.3	5.1				5.5				
Queue Storage Ratio												
Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:03 PM

SHORT REPORT General Information Site Information Analyst SKB SR 222 @ I-40 EB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction Analysis Year Fayette County 04/18/2011 Performed 2014 Time Period PM Peak Period

Volume and	d Timing Inpu	t													
				EB			WI				NB			SB	
			LT	TH	RT	LT	Т	H_	RT	LT	TH	RT	LT	TH	RT
Number of L	anes		2		2	2					2				
Lane Group			L		R	L					T				
Volume (vph	າ)		271		126	384					382				
% Heavy Ve	hicles		10		48	10					48				
PHF			0.90		0.90	0.90					0.90				
Pretimed/Ac	tuated (P/A)		Α			Α					Α				
Startup Lost	Time		2.0		2.0	2.0					2.0				
Extension of	f Effective Gre	en	2.0		2.0	2.0					2.0				
Arrival Type			3		3	3					3				
Unit Extensi	on		3.0		3.0	3.0					3.0				
Ped/Bike/RT	OR Volume		0	0	0	0	0			0	0		0	0	
Lane Width			12.0		12.0	12.0					12.0				
Parking/Gra	de/Parking		N	0	Ν	N	0		N	Ν	0	Ν	Ν	0	Ν
Parking/Hou	ır														
Bus Stops/H	lour		0		0	0					0				
Minimum Pe	edestrian Time			3.2			3.2	2			3.2			3.2	
Phasing	Excl. Left		02		3	04		N	IB Only		06)7	0	8
Timing	G = 30.0	G =		G =		G =			= 30.0			G =		G =	
	Y = 5	Y =		Y =		Y =		Υ:	= 5	Y =		Y =		Y =	
Duration of A	Analysis (hrs) :	= 0.2	?5							Су	cle Leng	th C =	70.0		

Duration of Arialysis (1115) =	0.20						Cycle L		. 70.0		
Lane Group Capacity,	Control	Delay	y, and	LOS I	Detern	ninatio	n				
		EB			WB		NB			SB	
Adjusted Flow Rate	301		140	427			424				
Lane Group Capacity	1366		828	1366			1047				
v/c Ratio	0.22		0.17	0.31			0.40				
Green Ratio	0.43		0.43	0.43			0.43				
Uniform Delay d ₁	12.6		12.3	13.2			13.8				
Delay Factor k	0.11		0.11	0.11			0.11				
Incremental Delay d ₂	0.1		0.1	0.1			0.3				
PF Factor	1.000		1.000	1.000			1.000)			
Control Delay	12.7		12.4	13.3			14.1				
Lane Group LOS	В		В	В			В				
Approach Delay		12.6			13.3		14.1				
Approach LOS		В			В		В				
Intersection Delay		13.3				ntersec	tion LOS			В	

General Information

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L		R	L				T				
Initial Queue/Lane	0.0		0.0	0.0				0.0				
Flow Rate/Lane Group	301		140	427				424				
Satflow/Lane	1641		1091	1641				1283				
Capacity/Lane Group	1366		828	1366				1047				
Flow Ratio	0.1		0.1	0.1				0.2				
v/c Ratio	0.22		0.17	0.31				0.40				
I Factor	1.000		1.000	1.000				1.000				
Arrival Type	3		3	3				3				
Platoon Ratio	1.00		1.00	1.00				1.00			1	
PF Factor	1.00		1.00	1.00				1.00				
Q1	1.9		0.9	2.8				3.0				
kв	0.5		0.4	0.5				0.4			1	
Q2	0.1		0.1	0.2				0.3				
Q Average	2.0		1.0	3.0				3.3				
Percentile Back of Queu	e (95th	perc	entile))								
fB%	2.0		2.1	2.0				2.0				
Back of Queue	4.1		2.1	6.1				6.5				
Queue Storage Ratio												
Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
95% Queue Storage Ratio												

SHORT REPORT Site Information **General Information** Analyst SKB SR 222 @ I-40 WB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2014 Time Period AM Peak Period Volume and Timing Input

Volume and Timing Inp	ut												
			EB			WB			NB			SB	
		LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes		2			2		2					2	
Lane Group		L			L		R					T	
Volume (vph)		798			117		257					513	
% Heavy Vehicles		48			48		10					10	
PHF		0.90			0.90		0.90					0.90	
Pretimed/Actuated (P/A)		Α			Α							Α	
Startup Lost Time		2.0			2.0		2.0					2.0	
Extension of Effective G	reen	2.0			2.0		2.0					2.0	
Arrival Type		3			3		3					3	
Unit Extension		3.0			3.0		3.0					3.0	
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	
Lane Width		12.0			12.0		12.0					12.0	
Parking/Grade/Parking		Ν	0	Ν	Ν	0	N	Ν	0	Ν	N	0	Ν
Parking/Hour													
Bus Stops/Hour		0			0		0					0	
Minimum Pedestrian Tim	ne		3.2			3.2			3.2			3.2	
Phasing Excl. Left		02	0	3	04		SB Only		06	_	07	0	8
Timing $G = 33.0$	G =		G =		G =		G = 27.0			G =		G =	
Y = 5	Y =		Y =		Y =		Y = 5	Y =		Y =		Y =	
Duration of Analysis (hrs) = 0.2	25						Су	cle Leng	th C =	70.0		

_ =	**					- 7			
Lane Group Capacit	y, Control De	lay, and	LOS D	etermi	nation				
	E	3		WB		NE	3	SB	
Adjusted Flow Rate	887		130	2	286			570	
Lane Group Capacity	1116		1116	1	002			1269	
v/c Ratio	0.79		0.12	0.	.29			0.45	
Green Ratio	0.47		0.47	0.	.39			0.39	
Uniform Delay d ₁	15.6		10.3	1.	4.8			16.0	
Delay Factor k	0.34		0.11	0.	.11			0.11	
Incremental Delay d ₂	4.1		0.0	(0.2			0.3	
PF Factor	1.000		1.000	1.	.000			1.000	
Control Delay	19.7		10.4	1	15.0			16.2	
Lane Group LOS	В		В		В			В	
Approach Delay	19.7	7		13.6				16.2	
Approach LOS	В			В				В	
Intersection Delay	17.3	3		Int	ersectio	n LOS		В	

General Information

Average Back of Queue

-		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L			L		R					Τ	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	887			130		286					570	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1116			1116		1002					1269	
Flow Ratio	0.4			0.1		0.1					0.2	
v/c Ratio	0.79			0.12		0.29					0.45	
I Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	7.5			0.7		2.2					4.3	
kв	0.4			0.4		0.4					0.5	
Q2	1.5			0.1		0.2					0.4	
Q Average	9.0			0.8		2.3					4.7	
Percentile Back of Queu	e (95th	perc	entile	· <u> </u>	Į.				J.			
fB%	1.9			2.1		2.0					2.0	
Back of Queue	16.8			1.6		4.7					9.2	
Queue Storage Ratio												
Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

_ . . .

Generated: 4/20/2011 3:06 PM

SHORT REPORT **General Information** Site Information Analyst SKB SR 222 @ I-40 WB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2014 Time Period PM Peak Period Volume and Timing Input

Volume and	d Timing Input										,		
			EB			WB			NB			SB	
		LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of L	₋anes	2			2		2					2	
Lane Group		L			L		R					T	
Volume (vpl	า)	511			98		122					800	
% Heavy Ve	ehicles	48			48		10					10	
PHF		0.90			0.90		0.90					0.90	
Pretimed/Ad	tuated (P/A)	Α			Α							Α	
Startup Lost	t Time	2.0			2.0		2.0					2.0	
Extension o	f Effective Gree	n <i>2.0</i>			2.0		2.0					2.0	
Arrival Type		3			3		3					3	
Unit Extensi	on	3.0			3.0		3.0					3.0	
Ped/Bike/R	TOR Volume	0	0		0	0	0	0	0		0	0	
Lane Width		12.0			12.0		12.0					12.0	
Parking/Gra	de/Parking	N	0	N	Ν	0	N	Ν	0	N	N	0	N
Parking/Hou	ır												
Bus Stops/F	Hour	0			0		0					0	
Minimum Pe	edestrian Time		3.2			3.2			3.2			3.2	
Phasing	Excl. Left	02	0	3	04		SB Only	,	06		07		8
Timing		G =	G =		G =		G = 30.0			G =		G =	
		Y =	Y =		Y =		Y = 5	Υ =		Y =		Y =	
Duration of Analysis (hrs) = 0.25 Cycle Length C = 70.0													

Daration of Analysis (1115) =	0.20					<u> </u>	7010 201	1911 0 -	70.0	
Lane Group Capacity,	Contro	l Delay, and	LOS [Detern	ninatio	n				
		EB		WB			NB		SB	
Adjusted Flow Rate	568		109		136				889	
Lane Group Capacity	1015		1015		1114				1410	
v/c Ratio	0.56		0.11		0.12				0.63	
Green Ratio	0.43		0.43		0.43				0.43	
Uniform Delay d ₁	15.0	- 			12.1				15.7	
Delay Factor k	0.16	- 			0.11				0.21	
Incremental Delay d ₂	0.7		0.0		0.0				0.9	
PF Factor	1.000		1.000		1.000				1.000	
Control Delay	15.7		12.0		12.1				16.6	
Lane Group LOS	В		В		В				В	
Approach Delay		15.7		12.1					16.6	
Approach LOS		В		В					В	
Intersection Delay		15.6			ntersect	tion LOS	3		В	

General Information

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L			L		R					Τ	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	568			109		136					889	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1015			1015		1114					1410	
Flow Ratio	0.2			0.0		0.1					0.3	
v/c Ratio	0.56			0.11		0.12					0.63	
I Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	4.3			0.7		0.9					7.1	
kв	0.4			0.4		0.4					0.5	
Q2	0.5			0.0		0.1					0.8	
Q Average	4.8			0.7		1.0					7.9	
Percentile Back of Queue	e (95th	perc	entile)		,	,				,	
fB%	2.0			2.1		2.1					1.9	
Back of Queue	9.3			1.5		2.0					14.9	
Queue Storage Ratio												
Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:07 PM

SHORT REPORT **General Information** Site Information Analyst SKB SR 222 @ I-40 EB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2034 Time Period AM Peak Period

Volume and Timing Input													
		EB			WE				NB	-		SB	
	LT	TH	RT	LT	TH	H RT	L	_T_	TH	RT	LT	TH	RT
Number of Lanes	2		2	2					2				
Lane Group	L		R	L					T				
Volume (vph)	586		168	366					377				
% Heavy Vehicles	10		48	10					48				
PHF	0.90		0.90	0.90					0.90				
Pretimed/Actuated (P/A)	Α			Α					Α				
Startup Lost Time	2.0		2.0	2.0					2.0				
Extension of Effective Green	2.0		2.0	2.0					2.0				
Arrival Type	3		3	3					3				
Unit Extension	3.0		3.0	3.0					3.0				
Ped/Bike/RTOR Volume	0	0	0	0	0		()	0		0	0	
Lane Width	12.0		12.0	12.0					12.0				
Parking/Grade/Parking	N	0	N	N	0	N	1	V	0	Ν	Ν	0	Ν
Parking/Hour													
Bus Stops/Hour	0		0	0					0				
Minimum Pedestrian Time		3.2			3.2				3.2			3.2	
Phasing Excl. Left	02	0	3	04		NB On	ly		06)7	0	8
Timing $G = 30.0$ G		G =		G =		G = 30	.0	G =		G =		G =	
Y = 5 Y		Y =		Y =		Y = 5		Y =		Y =		Y =	
Duration of Analysis (hrs) = 0 .	25							Су	cle Leng	th C =	70.0		

Baration of 7 that yold (1110)	0.20	<u> </u>								
Lane Group Capacity	y, Control	Delay, and	LOS E	Determi	natio	n				
		EB		WB		NB			SB	
Adjusted Flow Rate	651	187	407			419				
Lane Group Capacity	1366	828	1366			1047				
v/c Ratio	0.48	0.23	0.30			0.40				
Green Ratio	0.43	0.43	0.43			0.43				
Uniform Delay d ₁	14.4	12.7	13.1			13.8				
Delay Factor k	0.11	0.11	0.11			0.11				
Incremental Delay d ₂	0.3	0.1	0.1			0.3				
PF Factor	1.000	1.000	1.000			1.000				
Control Delay	14.6	12.8	13.2			14.0				
Lane Group LOS	В	В	В			В				
Approach Delay	1	14.2		13.2		14.0				
Approach LOS		В		В		В				
Intersection Delay	1	13.9		Int	tersect	ion LOS	В			

General Information

Average Back of Queue

Average back of Queue	1	EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L		R	L				T				
Initial Queue/Lane	0.0		0.0	0.0				0.0				
Flow Rate/Lane Group	651		187	407				419				
Satflow/Lane	1641		1091	1641				1283				
Capacity/Lane Group	1366		828	1366				1047				
Flow Ratio	0.2		0.1	0.1				0.2				
v/c Ratio	0.48		0.23	0.30				0.40				
I Factor	1.000		1.000	1.000				1.000				
Arrival Type	3		3	3				3				
Platoon Ratio	1.00		1.00	1.00				1.00				
PF Factor	1.00		1.00	1.00				1.00				
Q1	4.7		1.3	2.7				3.0				
kв	0.5		0.4	0.5				0.4				
Q2	0.4		0.1	0.2				0.3				
Q Average	5.1		1.4	2.9				3.2				
Percentile Back of Queu	e (95th	perc	entile))	,			•				,
fB%	2.0		2.1	2.0				2.0				
Back of Queue	10.0		2.9	5.8				6.5				
Queue Storage Ratio												
Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:08 PM

SHORT REPORT Site Information **General Information** Analyst SKB SR 222 @ I-40 EB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction Analysis Year 04/18/2011 Fayette County Performed 2034 PM Peak Period Time Period

Volume and	l Timing Inpu	t													
				EB			WI				NB			SB	
			LT	TH	RT	LT	T	Н	RT	LT	TH	RT	LT	TH	RT
Number of L	anes		2		2	2					2				
Lane Group			L		R	L					T				
Volume (vph	1)		276		173	434					250				
% Heavy Ve	hicles		10		48	10					48				
PHF			0.90		0.90	0.90					0.90				
Pretimed/Ac	tuated (P/A)		Α			Α					Α				
Startup Lost	Time		2.0		2.0	2.0					2.0				
Extension of	Effective Gre	en	2.0		2.0	2.0					2.0				
Arrival Type			3		3	3					3				
Unit Extension	on		3.0		3.0	3.0					3.0				
Ped/Bike/RT	OR Volume		0	0	0	0	0			0	0		0	0	
Lane Width			12.0		12.0	12.0					12.0				
Parking/Grad	de/Parking		Ν	0	N	N	0		N	Ν	0	Ν	N	0	N
Parking/Hou	r														
Bus Stops/H	our		0		0	0					0				
Minimum Pe	destrian Time			3.2			3.2	2			3.2			3.2	
Phasing	Excl. Left		02		3	04 G =		N	B Only		06)7	08	
Timing	G = 30.0	G =		G =	G =				= 30.0	G =		G =		G =	
	Y = 5 Y =			Y =		Y =		Y = 5			Y = Y =		= Y=		
Duration of A	on of Analysis (hrs) = 0.25								Cycle Length C = 70.0						

Baration of 7 that you (1110)	0.20			9,010 2011	g c					
Lane Group Capacity	y, Control	Delay, and	LOS D	etermi	natio	n				
		EB		WB		NB			SB	
Adjusted Flow Rate	307	192	482			278				
Lane Group Capacity	1366	828	1366			1047				
v/c Ratio	0.22	0.23	0.35			0.27				
Green Ratio	0.43	0.43	0.43			0.43			1	
Uniform Delay d ₁	12.6	12.7	13.5			12.9			1	
Delay Factor k	0.11	0.11	0.11			0.11				
Incremental Delay d ₂	0.1	0.1	0.2			0.1				
PF Factor	1.000	1.000	1.000			1.000				
Control Delay	12.7	12.8	13.6			13.0				
Lane Group LOS	В	В	В			В				
Approach Delay		12.8		13.6		13.0				
Approach LOS		В		В		В				
Intersection Delay		13.2		Int	ersect	ion LOS	В			

General Information

Average Back of Queue

Average back of Queue		EB			WB			NB		SB		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L		R	L				T				
Initial Queue/Lane	0.0		0.0	0.0				0.0				
Flow Rate/Lane Group	307		192	482				278				
Satflow/Lane	1641		1091	1641				1283				
Capacity/Lane Group	1366		828	1366				1047				
Flow Ratio	0.1		0.1	0.2				0.1				
v/c Ratio	0.22		0.23	0.35				0.27				
I Factor	1.000		1.000	1.000				1.000				
Arrival Type	3		3	3				3				
Platoon Ratio	1.00		1.00	1.00				1.00				
PF Factor	1.00		1.00	1.00				1.00				
Q1	1.9		1.3	3.2				1.8				
kв	0.5		0.4	0.5				0.4				
Q2	0.1		0.1	0.3				0.1				
Q Average	2.1		1.4	3.5				2.0				
Percentile Back of Queu	e (95th	perc	entile))	,							
fB%	2.0		2.1	2.0				2.0				
Back of Queue	4.2		3.0	7.0				4.0				
Queue Storage Ratio												
Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

_ ___

Generated: 4/20/2011 3:09 PM

SHORT REPORT **General Information** Site Information Analyst SKB SR 222 @ I-40 WB Ramps Intersection Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2034 Time Period AM Peak Period

Volume and	l Timing Input	<u> </u>												
				EB			WB			NB			SB	
			LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of L	anes		2			2		2					2	
Lane Group			L			L		R					T	
Volume (vph)		808			143		258					547	
% Heavy Ve	hicles		48			48		10					10	
PHF			0.90			0.90		0.90					0.90	
Pretimed/Act	tuated (P/A)		Α			Α							Α	
Startup Lost	Time		2.0			2.0		2.0					2.0	
Extension of	Effective Gree	en	2.0			2.0		2.0					2.0	
Arrival Type			3			3		3					3	
Unit Extension	on		3.0			3.0		3.0					3.0	
Ped/Bike/RT	OR Volume		0	0		0	0	0	0	0		0	0	
Lane Width			12.0			12.0		12.0					12.0	
Parking/Grad	de/Parking		Ν	0	Ν	N	0	N	Ν	0	Ν	Ν	0	Ν
Parking/Hou	r													
Bus Stops/H	our		0			0		0					0	
Minimum Pe	destrian Time			3.2			3.2			3.2			3.2	
Phasing	sing Excl. Left 02		02	0	03			SB Only		06		07		8
Timing	G = 33.0 $G =$		G = Y =				G = 27.0		G =		G =			
	Y = 5 Y =					Y =		Y = 5						
Duration of A	Analysis (hrs) =	= 0.2	5						Су	cle Leng	th C =	70.0		

Lane Group Capacit	y, Control	Delay, and	LOS D	eterm	ninatio	n					
		EB		WB			NB		SB		
Adjusted Flow Rate	898		159		287			608			
Lane Group Capacity	1116		1116		1002				1269		
v/c Ratio	0.80		0.14		0.29				0.48		
Green Ratio	0.47		0.47		0.39				0.39		
Uniform Delay d ₁	15.8		10.5		14.8				16.2		
Delay Factor k	0.35		0.11		0.11				0.11		
Incremental Delay d ₂	4.4		0.1		0.2				0.3		
PF Factor	1.000		1.000		1.000				1.000		
Control Delay	20.2		10.5		15.0				16.5		
Lane Group LOS	С		В		В				В		
Approach Delay		20.2		13.4					16.5		
Approach LOS		С		В					В		
Intersection Delay		17.5		I	ntersect	tion LOS	3		В		

General Information

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L			L		R					Т	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	898			159		287					608	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1116			1116		1002					1269	
Flow Ratio	0.4			0.1		0.1					0.2	
v/c Ratio	0.80			0.14		0.29					0.48	
I Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	7.7			0.9		2.2					4.7	
kв	0.4			0.4		0.4					0.5	
Q2	1.6			0.1		0.2					0.4	
Q Average	9.2			1.0		2.3					5.1	
Percentile Back of Queu	e (95th	perc	entile)			,			•		
fB%	1.9			2.1		2.0					2.0	
Back of Queue	17.2			2.0		4.8					9.9	
Queue Storage Ratio												
Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:11 PM

SHORT REPORT General Information Site Information Analyst SKB Intersection SR 222 @ I-40 WB Ramps Agency or Co. TDOT/TranSystems Area Type All other areas Date Jurisdiction 04/18/2011 Fayette County Performed Analysis Year 2034 Time Period PM Peak Period **Volume and Timing Input** WB ΕB NΒ SB LT TH RT LT TH RT LT TH RT TH RT Number of Lanes 2 2 2 2 L Lane Group L R Τ Volume (vph) 526 132 125 822 48 10 10 % Heavy Vehicles 48 PHF 0.90 0.90 0.90 0.90 Pretimed/Actuated (P/A) Α Α Α Startup Lost Time 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green 2.0 2.0 2.0 3 Arrival Type 3 3 3

Bus Stops/Hour 0 0 0 0 Minimum Pedestrian Time 3.2 3.2 3.2 3.2 Phasing Excl. Left 02 03 04 SB Only 06 80 G = G = G = 30.0G = G = G = 30.0G = G = Timing Y = 5 Y = Y = <u>Y</u> = Y = 5 Y = Y = Y = Duration of Analysis (hrs) = 0.25Cycle Length C = 70.0

3.0

0

12.0

Ν

0

0

3.0

0

12.0

Ν

0

Ν

0

0

Ν

Direction of Africago (1119) – 0.20										
Lane Group Capacity	y, Control	Delay, and	LOS D	eterm	inatio	n				
		EB		WB			NB		SB	
Adjusted Flow Rate	584		147		139				913	
Lane Group Capacity	1015		1015		1114				1410	
v/c Ratio	0.58		0.14		0.12				0.65	
Green Ratio	0.43		0.43		0.43				0.43	
Uniform Delay d ₁	15.2		12.2		12.1				15.8	
Delay Factor k	0.17		0.11		0.11				0.23	
Incremental Delay d ₂	0.8		0.1		0.1				1.0	
PF Factor	1.000		1.000		1.000				1.000	
Control Delay	16.0		12.3		12.1				16.9	
Lane Group LOS	В		В		В				В	
Approach Delay		16.0		12.2					16.9	
Approach LOS		В		В					В	
Intersection Delay		15.8		Intersection					В	

Unit Extension

Lane Width

Parking/Hour

Ped/Bike/RTOR Volume

Parking/Grade/Parking

3.0

0

12.0

Ν

0

0

Ν

3.0

0

12.0

0

Ν

0

Ν

General Information

Average Back of Queue

		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Lane Group	L			L		R					Τ	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	584			147		139					913	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1015			1015		1114					1410	
Flow Ratio	0.2			0.1		0.1					0.3	
v/c Ratio	0.58			0.14		0.12					0.65	
I Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	4.4			0.9		0.9					7.4	
kв	0.4			0.4		0.4					0.5	
Q2	0.5			0.1		0.1					0.9	
Q Average	5.0			1.0		1.0					8.3	
Percentile Back of Queue	e (95th	perc	entile)	Į.						· J	
fB%	2.0			2.1		2.1					1.9	
Back of Queue	9.7			2.0		2.0					15.5	
Queue Storage Ratio												
Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
95% Queue Storage Ratio												

Copyright © 2008 University of Florida, All Rights Reserved

HCS+TM Version 5.4

Generated: 4/20/2011 3:12 PM