INTERCHANGE MODIFICATION STUDY

PREPARED BY
TRANSYSTEMS

FOR
THE TENNESSEE DEPARTMENT OF TRANSPORTATION PROJECT PLANNING DIVISION

November 2011

TABLE OF CONTENTS

Executive Summary iv
1.0 Introduction 1
1.1 Study Scope 1
1.2 Project Need 1
1.3 Description of Project Area 2
1.4 Relationship to Other Highway Improvement Plans and Programs 6
2.0 Preliminary Planning Data 9
2.1 Land Use 9
2.2 Environmental Concerns 12
2.3 Traffic Served 12
2.4 Discussion of Interchange Concepts 15
3.0 Engineering Investigation 20
3.1 Traffic Operations 20
3.2 Crash Analysis 27
3.3 S.R. 222 Bridge Inspection Report 28
3.4 Wastewater Treatment Facility 29
3.5 Interchange Concept Evaluation Comparison 29
3.6 Access Analysis (FHWA Eight Policy Points) 33
FHWA Prompt-List for Reviewing Interstate Access Requests ---(Concepts 1 and 5)
4.0 Summary and Conclusions 38
4.1 TDOT Design Concurrence Letter and Local Agency Letters of Support 38
Tables
1.1 - U.S. Census Population Trends 6
2.1 - Historical Traffic Volumes Growth Rate Summary 13
2.2 - Estimated Development Build-Out Trips 14
2.3 - Description of Interchange Concepts 15
3.1 - Level of Service (LOS) Description 20
3.2 - Traffic Volumes (Two-Way) and Truck Percentages 21
3.3-3.8 - Capacity Analysis Results 22-27
$3.9-\quad$ I-40/S.R. 222 Crash Data Summary 28

Figures

1.1 - Location Map 3
1.2 - Existing Interchange Overview 4
1.3 - Northbound on S.R. 222 5
$1.4 \quad-\quad$ Southbound on S.R. 222 5
1.5 - Concept Relationship 8
2.1 - Abandoned Gas Station and UST's 9
2.2 - Pilot Travel Center 10
2.3 - Deerfield Inn 10
2.4 - Exxon Gas Station/Convenience Store 11
2.5 - Bethlehem Hebron Chapel Church 11
2.6 - TDOT Traffic Count Stations 12
2.7 - Combination Interchange Option (with Shared Frontage Road) 19
2.8 - Combination Interchange Option (with Separate Frontage Roads) 19
3.1 - Concept 1 31
3.2 - Concept 5 32

Appendix

A Traffic Data
B Concept Figures
C Cost Estimate Worksheets
D Highway Capacity Analysis Output Files

1.0 INTRODUCTION

1.1 Study Scope

The scope of this study is to provide a detailed evaluation of potential modifications and/or configurations to better accommodate existing and future traffic for the study interchange of I-40 at S.R. 222 (Exit 42). This study addresses the issues required to obtain Federal Highway Administration (FHWA) approval for an interchange modification, consistent with the Tennessee Department of Transportation's (TDOT) roadway design standards. This report considers existing and future traffic conditions in the project study area to assess the potential traffic impacts on the interstate and connecting roadway system over a twenty (20) year planning horizon.

1.2 Project Need

The request for upgrading the study interchange was initiated by the Tennessee Department of Economic and Community Development (ECD) on behalf of the Tennessee Valley Authority (TVA). In March 2007, the University of Memphis conducted an economic research study on land adjacent to the interchange area referred to as the Memphis-Jackson I-40 Advantage Megasite. The report, The Potential Economic Impact of an Automobile Assembly Plant: I-40 Advantage Auto Park, discusses the economic impacts and characteristics of the Megasite totaling approximately 2,000 jobs and evaluates the potential for this location to bring jobs, income, and tax revenue to the citizens of West Tennessee.

TVA's Megasite Program offers sites suitable for large-scale manufacturing that are certified as ready for development. To be certified, a large land parcel must meet the criteria of being ready for sale, accessible to utilities, and physically developable. The proposed improvements for the study interchange are essential to the development of the Megasite located on the north side of $\mathrm{I}-40$ within the study area as shown in Figure 1.1.

The adjacent interchanges as described in Section 1.3 are too far away to adequately serve the Megasite. The local road system is adequate for the current land uses in the vicinity of the study interchange. However, if the Megasite is developed, the local road system and existing interchange will not provide the necessary capacity and the desired access to function adequately. As detailed in Section 3.1, the capacity of the study interchange will be at LOS F if the Megasite is developed without modifications to the interchange.

The existing two (2) lane S.R. 222 bridge is constructed over I-40 on a fifty-two (52) degree skew angle. The latest bridge inspection report was conducted on December 14, 2010. During this inspection, the overall condition of the study bridge was determined to be rated fair with a sufficiency rating of 63.2. TDOT Structures Division has determined that the existing bridge consists of four (4) spans and is not a candidate for retrofit and needs to be replaced for the following reasons:

- Any new bridge would be a two (2) span structure for the safety of motorists travelling on I-40.
- A two (2) span structure would accommodate any future widening of I-40 without additional bridge modifications.
- The cost of widening the existing structure to accommodate the required travel lanes plus full shoulders would be greater than the cost of replacing the entire structure.

The ECD has agreed to provide 100% of the funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements. Even though there are no confirmed developments for the Megasite, the ECD envisions that all of the paperwork including construction design documents be completed and are shovel-ready projects when a tenant for the Megasite is identified so that the roadway improvements can be in place in conjunction with the opening of the Megasite.

1.3 Description of Project Area

The I-40 at S.R. 222 (Exit 42) study interchange, a traditional diamond interchange, is located in Fayette County near Mile Marker 42. Within the interchange study area, I-40 is a four (4) lane divided, limited access interstate facility and S.R. 222 is a two (2) lane arterial facility that bridges over I-40. S.R. 222, also known as Stanton-Somerville Road, provides direct interstate access to Stanton to the north side and Sommerville to the south. Sommerville is the County Seat for Fayette County.

The nearest interchange to the east along I-40 is located at Exit 47 (Dancyville Road) and the nearest interchange to the west is located at Exit 35 (S.R. 59). These adjacent I-40 interchanges are approximately five (5) miles to the east and seven (7) miles to the west, respectively.

Figure 1.1 depicts the study location and the surrounding area with the proximity of the adjacent interchanges highlighted and the approximate location of the Megasite. Figure 1.2 shows the study interchange area on an aerial photograph. Figure 1.3 and Figure 1.4 depict the northbound and southbound views along S.R. 222, respectively.

Figure 1.1 - Location Map

Figure 1.2 - Existing Interchange Overview

Figure 1.3 - Northbound on S.R. 222

Figure 1.4 - Southbound on S.R. 222

Population and Growth

Table 1.1 presents population trends for the area. From the year 1990 to 2009, the population in Fayette County increased by 52\% while Haywood County decreased by 3\%, respectively. For comparison, the statewide pace increased during the same period by 29%. The difference in growth between Fayette and Haywood Counties is mainly due to the influence of the Memphis suburban growth on the western area of Fayette County, which is approximately twenty (20) miles west of the study interchange. The Megasite development area is entirely in Haywood County and closer to the study interchange (located just south of the county line in Fayette County) than the primary population centers in Fayette County.

Table 1.1 - U.S. Census Population Trends

Year	Fayette County	Haywood County	Tennessee
1990	25,509	19,437	4.9 mil
2000	28,806	19,797	5.7 mil
2009 (Est.)	38,785	18,881	6.3 mil

1.4 Relationship to Other Highway Improvement Plans and Programs

In 2009, Tennessee Governor Phil Bredesen requested the State's General Assembly to include approximately $\$ 27$ million in next fiscal-year's budget for the construction of roads, bridges, water and sewer lines, and other infrastructure items related to the potential Megasite. The proposed modifications to the I-40 at S.R. 222 (Exit 42) interchange will provide significant transportation significant infrastructure improvements for the Megasite. The request was approved. Currently, the ECD has authorized funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements in conjunction with this study.

This Interchange Modification Study (IMS) is being prepared in conjunction with other studies, planned projects, and consideration for future needs within the study area. The following summarizes these considerations and efforts:

I-40/I-81 Corridor Feasibility Study

In 2007, Parsons Brinckerhoff prepared an I-40/I-81 Corridor Feasibility Study for TDOT. Based on the findings of the study, the I-40 corridor will merit at least one (1) additional lane in each direction in the future.
S.R. 222 Relocation \& System Improvements Feasibility Study

A draft study was prepared in 2009 to evaluate the feasibility of improving S.R. 222 to better meet the needs of the area necessitated if the Megasite is developed. The S.R. 222 study limits extended 5.81 miles from the I-40 interchange in Fayette County to the intersection of S.R. 1 (U.S. 70/U.S. 79) in Haywood County. The feasibility study established the immediate and longterm needs of the study area and assessed various options for meeting these needs in the future. One need is to relocate the alignment of S.R. 222 to allow for the full development of the Megasite area.

The ECD has agreed to provide 100% of the funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements. Even though there are no confirmed developments for the Megasite, the ECD envisions that all of the paperwork including
construction design documents be completed and are shovel-ready projects when a tenant for the Megasite is identified so that the roadway improvements can be in place in conjunction with the opening of the Megasite.

Potential I-40 Interchange Justification Study (IJS)

There is a potential need for a new interchange to the east if the Megasite is developed and demand exceeds the capacity at an improved Exit 42 interchange. A new interchange is solely dependent upon the potential development of the Megasite and the ability to accommodate capacity at the existing Exit 42 interchange. Preliminary analysis was conducted to investigate the viability of providing a new interchange on I-40 between the existing interchanges at Exit 42 (S.R. 222) in Fayette County and Exit 47 (Dancyville Road) in Haywood County. The analysis conceptualized the proposed interchange configuration is a trumpet layout with a bridge over I-40 connecting to a new State Industrial Access (SIA) roadway on the north side of I-40. Auxiliary lanes along I-40 are included in conjunction with the addition of a new interchange.

Potential State Industrial Access (SIA) Road to Connect the Potential I-40 Interchange
Similar to the new interchange, the State Industrial Access (SIA) road is directly dependent upon the potential new interchange and the development of the Megasite. The SIA provides an alternative connection from the Megasite to the potential new interchange on I-40.

Figure 1.5 (Concept Relationship) presents a depiction of how these future (potential and feasibility study) projects relate to the improvements at the I-40/S.R. 222 interchange.

2.0 PRELIMINARY PLANNING DATA

2.1 Land Use

The land in the vicinity of the study interchange is a mixture of various commercial, residential, agricultural, and institutional land uses. Specific areas adjacent to this interchange are discussed below.

Northeast Quadrant

In the study interchange's northeast quadrant, there is an abandoned service station shown in Figure 2.1. Underground storage tanks (UST's) exist on this abandoned site.

Figure 2.1 - Abandoned Service Station and UST's

Northwest Quadrant

In the study interchange's northwest quadrant, the land use is primarily agricultural with some residential. No commercial development exists in this quadrant.

Southeast Quadrant

In the study interchange's southeast quadrant, there is a truck stop (Pilot Travel Center) and a hotel (Deerfield Inn) shown in Figure 2.2 and Figure 2.3, respectively. The Pilot Travel Center consists of many uses (truck stop/gas station/convenience store). As a result, the truck percentage within the vehicle classification composition on S.R. 222 between I-40 and the Pilot Travel Center is almost half (48\%). In addition, there is a waste water treatment facility located adjacent to l-40 that is owned by the Pilot Travel Center and also used by the Deerfield Inn.

Figure 2.2 - Pilot Travel Center

Figure 2.3 - Deerfield Inn

Southwest Quadrant
In the study interchange's southwest quadrant, there is a gas station/convenience store (Exxon) and a church (Bethlehem Hebron Chapel) shown in Figure 2.4 and Figure 2.5, respectively. A cemetery is adjacent to the church.

Figure 2.4 - Exxon Gas Station/Convenience Store

Figure 2.5 - Bethlehem Hebron Chapel Church

Northern Area

The northern area along S.R. 222 contains agricultural and residential land uses along with some commercial land uses, a service station (Earl's Garage) and a motel (America's Best Value Inn).

Southern Area

The southern area along S.R. 222 is primarily undeveloped with some agricultural and residential land uses.

2.2 Environmental Concerns

There are UST's in three (3) of the four (4) quadrants of the study interchange. Other concerns include potential impacts to the waste water treatment facility in the southeast quadrant. Two (2) concepts discussed later in this report include widening S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange.

As this project progresses in the National Environmental Policy Act (NEPA) planning process, it will be necessary to conduct other studies to determine detailed environmental and historical impacts. TDOT will perform all necessary studies including ecological and historical studies.

2.3 Traffic Served

The traffic volumes used in this study were approved by TDOT on April 14, 2011. A copy of the TDOT approval letter is contained in Appendix \boldsymbol{A}. The following is a summary of the background information utilized in the development of these traffic volumes.

Traffic Volume Data Collection

24-hour traffic counts were obtained from TDOT within the study area. In addition, TDOT provided l-40 ramp counts for each of the twelve (12) entrance/exit ramps within the study area. Turning movement counts (TMC) were also collected at ramp terminal intersections. Truck percentages were provided by TDOT with the exception of the Megasite that was estimated to be 10%. The traffic volume data collected for this study is contained in Appendix \boldsymbol{A}.

Historical Growth Rate Analyses

Historical traffic volumes were obtained from nine (9) traffic count stations within the project study area. Three (3) traffic count stations were located on I-40 and two (2) traffic count stations each were located at the three (3) study interchanges (Exit 35, Exit 42, and Exit 47). All of these traffic count stations are maintained by TDOT. A summary of the historical traffic volumes growth rates at these nine traffic count stations is shown in Figure 2.6 and Table 2.1.

Figure 2.6 - TDOT Traffic Count Stations

Table 2.1 - Historical Traffic Volumes Growth Rate Summary

Year	Annual Average Daily Traffic (AADT)								
	I-40 Mainline			SR 59 Mainline (Exit 35)		$\begin{aligned} & \text { S.R. } 222 \text { Mainline } \\ & \text { (Exit 42) } \end{aligned}$		Dancyville Road Mainline (Exit 47)	
	CS\#074	CS\#063	CS\#991	CS\#004	CS\#110	CS\#088	CS\#018	CS\#053	CS\#087
2010	26,834	26,502	35,613	2738	2695	581	689	459	890
2009	26,568	25,896	34,730	2350	2864	576	743	463	924
2008	26,798	26,580	33,339	2573	2593	573	662	426	886
2007	35,626	37,392	36,856	2779	2804	599	748	463	912
2006	34,253	33,295	36,960	3170	3137	593	692	450	956
2005	36,566	33,382	35,983	2805	2725	644	749	404	972
2004	30,448	31,721	33,168	2494	3070	626	720	396	964
2003	33,943	31,501	31,462	2482	2960	601	686	355	899
2002	30,670	33,972	31,213	2229	4372	536	702	426	956
2001	36,234	34,958	32,109	2209	3137	518	909	433	937
2000	34,030	31,810	31,730	2875		545	632	420	853
10-Year Average Growth Rate	-0.85\%	-0.92\%	2.37\%	2.17\%	1.80\%	0.69\%	1.07\%	2.56\%	0.13\%
2-Year Average Growth Rate	-0.15\%	0.07\%	2.71\%	2.86\%	1.75\%	0.67\%	1.80\%	3.20\%	0.22\%

As shown in Table 2.1, the traffic volumes on the l-40 mainline experienced an overall $20 \% \pm$ reduction between 2007 and 2008. Since 2008, the I-40 traffic volumes have increased at a slow to moderate growth rate. As a result, the historical traffic volumes were analyzed for both a ten (10) year period (2000-2010) and for a two (2) year period (2008-2010). The overall average growth rate for both analyses was calculated using simple linear regression procedures. Relying on engineering judgment and being conservative, it was decided to only use CS\#991 for the I-40 mainline growth rate calculations since negligible growth had occurred the other two (2) traffic count stations and both of these traffic count stations had experienced a greater reduction in traffic since 2008 when compared against CS\#991. The final growth rate for each mainline was determined by combining the 2 -year (2008-2010) and the 10-year (2000-2010) growth rates, giving two-thirds weight to the 2-year growth rate and one-third weight to the 10-year growth rate. In addition, the final growth rate for each of the side roads (i.e. S.R. 59, S.R. 222, and Dancyville Road) was adjusted to 2.00% if the growth rate was calculated below 2.00%.

The following are the final calculated growth rates for each mainline utilized in this study:

- I-40:
- SR 59 (Exit 35):
- S.R. 222 (Exit 42):
- Dancyville Road (Exit 47):

Horizon Years and Time Periods Analyzed

The horizon years were determined to be 2014 and 2034. For both horizon years, the time periods analyzed were AM and PM Design Hour Volumes (DHV) and Annual Average Daily Traffic (AADT).

Traffic Volume Projections

Traffic volumes were projected using the previously described growth rates within the project study area for the horizon years 2014 and 2034 and for each time period AM and PM DHV and AADT. A truck stop, Pilot Travel Center, is located on S.R. 222 (Exit 42) in the southeast quadrant of the I-40/S.R. 222 interchange. This place of business attracts heavy truck volumes not indicative of the other sections along S.R. 222. In order to reduce the interchange traffic volumes down to the S.R. 222 traffic volumes southeast of the Pilot Travel Center, the S.R. 222 intersection with the Pilot Travel Center has been included in the traffic volume projections.

Megasite and Other Assumed Developments

In addition to the traffic volume projections developed for horizon years 2014 and 2034, trips were generated for the megasite and other assumed developments. The number of trips was estimated using the Institute of Transportation Engineer's (ITE) Trip Generation Manual, 7th Edition. The development build-out was assumed to be 2,000 full-time employees for the Industrial Park Land Use Type. In addition, the trips were increased to account for other assumed development around the I-40/S.R. 222 interchange which included four (4) fast food restaurants and two (2) convenience markets with gas pumps. Overall, a total of 17,708 trips were estimated for the Megasite development build-out. Table 2.2 summarizes the trips generated for each land use.

Table 2.2 - Estimated Development Build-Out Trips

Land Use Description		Industrial Park	Convenience Markets with Gas Pumps	Fast Food Restaurant with Drive Thru
ITE Code		130	853	934
Development Size (Each)		2000 Employees	3,000 Gross SF	3,000 Gross SF
Number of Developments		1	2	4
$\stackrel{\imath}{\overline{8}}$	Average Rate	$\begin{gathered} \text { 3.34/Employee } \\ (50 \% \text { In }-50 \% \text { Out }) \end{gathered}$	$\begin{gathered} 845.60 / \text { KSF } \\ (50 \% \text { In }-50 \% \text { Out }) \end{gathered}$	$\begin{gathered} 496.12 / \text { KSF } \\ (50 \% \text { In }-50 \% \text { Out }) \end{gathered}$
	Total Estimated Trips	6,680	5,074	5,954
$\sum \text { 츙 훈 }$	Average Rate	0.47/Employee (86% In - 14\% Out)	$\begin{gathered} \text { 45.58/KSF } \\ (50 \% \text { In }-50 \% \text { Out }) \end{gathered}$	$\begin{gathered} \text { 53.11/KSF } \\ (51 \% \text { In }-49 \% \text { Out }) \end{gathered}$
	Total Estimated Trips	940	274	638
\sum_{Ω}	Average Rate	$0.46 /$ Employee $(20 \%$ In - 80\% Out $)$	$60.61 /$ KSF $(50 \%$ In -50% Out $)$	$34.64 / \mathrm{KSF}$ $(52 \% \mathrm{In}-48 \%$ Out $)$
	Total Estimated Trips	920	364	416

The trip distribution percentages are contained in Appendix A along with the development trip assignments for time period analyzed. To be conservative and a worst-case scenario, internal capture and pass-by reductions were not included in the above trip totals in the trip assignments.

Traffic Volume Diagrams

Traffic volume diagrams were prepared for I-40 between Exit 35 and Exit 47 and approved by TDOT on April 14, 2011. These traffic volume diagrams include the AM DHV, the PM DHV and the AADT for the horizon years 2014 and 2034. The traffic volumes include the calculated traffic volume projections and the total generated trips from full build-out of the Megasite and other assumed developments. The traffic volume diagrams are contained in Appendix A.

2.4 Discussion of Interchange Concepts

During the course of this study, a total of six (6) build interchange concepts were developed for evaluation. In addition, a no-build alternative was evaluated to determine the transportation impacts if no construction improvements are made to the study interchange. The following is a summary of the study concepts considered and evaluated include:

Table 2.3 - Description of Interchange Concepts

Concept No.	Description
Concept 1	Partial Traditional Diamond Interchange located to the east of the existing interchange.
Concept 2	Traditional Diamond Interchange located to the east of the existing interchange.
Concept 3	Diverging Diamond Interchange located to the east of the existing interchange.
Concept 4	Traditional Diamond Interchange located at the existing interchange.
Concept 5	Combined Traditional/Tight Diamond Interchange located at the existing interchange.
Concept 6	Traditional Diamond Interchange located to the west of the existing interchange.
-	No-Build Alternative

Cost estimates were prepared for the construction of all six (6) concepts. These cost estimates include the costs to construct a new S.R. 222 bridge over I-40 and the required modifications to S.R. 222 such as providing connections back to S.R. 222 on both the north and south sides of $\mathrm{I}-40$. Concept figures and cost estimates including the breakdown details for the six (6) concepts are contained in Appendix B and Appendix C, respectively. All concept figures provide full interchange access for all traffic movements and show connections to public roads. The following is a description of these six (6) interchange concepts and the No-Build Alternative:

Concept 1 - Partial Traditional Diamond Interchange East of the Existing Interchange
This concept consists of constructing a new S.R. 222 bridge, perpendicular to l-40, approximately 500 feet east of the existing S.R. 222 bridge structure. A five (5) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction and a center left turn lane in each direction. An I-40 eastbound loop ramp is located in the southeast quadrant of the interchange for traffic heading north on S.R. 222 and an l-40 eastbound right turn ramp is located in the southwest quadrant of the interchange for traffic heading south on S.R. 222. The S.R. 222 improvements extend approximately 1,100 feet north from the northern ramp terminal intersection and 2,500 feet south from the southern ramp terminal intersection.

The loop ramp provides for improved access to the north side of the interchange for vehicular movements from the west. This is a critical movement for goods and supplies if the Megasite ntial Megasite development. This loop provides separation from other off-ramp movements and eliminates the need for signalization at this ramp terminal. Because of the loop ramp, the I-40 eastbound exit traffic movement will utilize a split along the exit ramp for the north/south direction. The will require an overhead sign truss and two (2) large guide signs that are not included in any of the other concepts.

On the north side of $1-40$, a field drive would be connected to Thorpe Drive since it is located within the proposed controlled access limits. On the south side of $I-40$, a separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other nearby destinations. The existing wastewater treatment facility would be relocated with this concept or an alternative system provided. The estimated cost for Concept 1 is $\$ 13.1$ million.

Concept 2 - Traditional Diamond Interchange East of the Existing Interchange

This concept is similar to Concept 1 with the exception of eliminating the l-40 eastbound loop ramp located in the southeast quadrant of the interchange. As a result, this I-40 eastbound traffic movement must turn left via a signalized intersection in order to head north on S.R. 222. Similar to Concept 1, the existing wastewater treatment facility would need to be relocated or an alternative system provided. The estimated cost for Concept 2 is $\$ 12.2$ million.

Concept 3 - Diverging Diamond Interchange East of the Existing Interchange

This diverging diamond concept consists of constructing a new S.R. 222 bridge perpendicular to I-40 approximately 500 feet east of the existing S.R. 222 bridge structure. A four (4) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction separated by barrier. The left turn and right turn movements from both eastbound and westbound ramps consist of two (2) lanes each. The design of the Thorpe Drive intersection is similar to a divided highway intersection because S.R. 222 is divided through this location.

The design speed on S.R. 222 within the vicinity of the l-40 bridge area is reduced to twenty-five (25) miles per hour (mph). This speed restriction could be increased to thirty (30) mph by increasing the right-of-way impacts.

The S.R. 222 improvements extend approximately 1,200 feet north from the northern ramp terminal intersection and 2,500 feet south from the southern ramp terminal intersection. On the north side of I-40, a field drive would be connected to Thorpe Drive since it is located within the proposed controlled access limits. On the south side of I-40, a separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other nearby destinations.

Similar to Concepts 1 and 2, the existing wastewater treatment facility would be relocated with this concept or an alternative system provided. The total estimated cost for Concept 3 is $\$ 13.4$ million.

Concept 4 - Traditional Diamond Interchange

This concept consists of rebuilding the S.R. 222 bridge at the same location on the same skew angle. Similar to Concept 1, a five (5) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction and a center left turn lane in each direction. The west side of S.R. 222 remains on the existing location due to the church and cemetery located on the south side of I-40 and all of the widening is along the east side of S.R. 222. Therefore, a separate roadway connection is provided from the existing S.R. 222 roadway for access to the Pilot Travel Center and other destinations on the south side of I-40. The existing businesses along the east side of S.R. 222 and their access to S.R. 222 would be greatly impacted and limited due to the construction of the separate roadway connection. These additional access challenges will require more direct negotiations with the Pilot Station and Deerfield Inn properties.

This concept also includes the widening S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange. This concept does not eliminate the existing access connections along the west side of S.R. 222 (south side of I-40) currently within the controlled access limits. The S.R. 222 improvements extend approximately 700 feet north from the northern ramp terminal intersection and 1,800 feet south from the southern ramp terminal intersection. On the north side of I-40, a field drive would be connected to Thorpe Drive since it is located within the proposed controlled access limits. Since the proposed bridge is located at the same location of the existing bridge and being constructed under traffic, the estimated costs for the bridge structure include a 25% contingency. The total estimated cost for Concept 4 is $\$ 13.8$ million.

Concept 5 - Combined Traditional/Tight Diamond Interchange

This concept is similar to Concept 4 with two (2) exceptions: 1) the I-40 eastbound interchange ramp terminal intersection is relocated approximately 150 feet closer towards I-40, and 2) the separate roadway connection providing access to the Pilot Travel Center and other destinations on the south side of I-40 is eliminated. Overall, the I-40 westbound interchange ramp terminal intersection functions as a Traditional Diamond Interchange and the I-40 eastbound interchange ramp terminal intersection functions as a Tight Diamond Interchange. As with Concept 4, the west side of S.R. 222 remains on the existing location due to the church and cemetery located on the south side of I-40 and all of the widening is along the east side of S.R. 222. Similar to Concept 4, the S.R. 222 widening will create additional access challenges and will require more direct negotiations with the Pilot Station and Deerfield Inn properties.

In order to eliminate all access driveways within the controlled access limits, the first (or closest) driveway from I-40 to the Exxon gas station/convenience store is closed and the Deerfield Inn driveway is relocated approximately fifty (50) feet southward. The Exxon gas
station/convenience store has a third driveway that has been temporarily closed with bollards. The removal of these bollards would provide for a second driveway replacing the closed driveway.

This concept also includes widening S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange. A lane add/drop situation occurs at the Hebron Road intersection, thus creating the four-lane typical section northward on S.R. 222. These S.R. 222 improvements reduce the construction impacts on S.R. 222 south of I-40 to approximately 1,400 feet south from the southern ramp terminal intersection. On the north side of I-40, a field drive would be constructed to Thorpe Drive since it is located within the proposed controlled access limits. Similar to Concept 4, the estimated costs for the bridge structure include a 25% contingency since the proposed bridge is located at the same location of the existing bridge and being constructed under traffic. The total estimated cost for Concept 5 is $\$ 13.2$ million.

Concept 6 - Traditional Diamond Interchange West of the Existing Interchange

This concept consists of constructing a new S.R. 222 bridge perpendicular to I-40, but approximately 1,500 feet west of the existing S.R. 222 bridge structure. The proposed S.R. 222 bridge over I-40 was relocated approximately 1,500 feet west of S.R. 222 in order to avoid the existing cemetery and keep the residential impacts to a minimum. Similar to most of the previous concepts, a five (5) lane section for S.R. 222 is proposed with this concept that consists of two (2) travel lanes in each direction and a center left turn lane in each direction.

The horizontal and vertical alignment geometry would be of concern as a result of the number of turns along the proposed route. The S.R. 222 improvements extend approximately 2,300 feet north from the northern ramp terminal intersection and 2,000 feet south from the southern ramp terminal intersection. On the south side of I-40, a separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other nearby destinations. The total estimated cost for Concept 6 is $\$ 11.9$ million.

No-Build Alternative

No construction improvements are made to the study interchange. The no-build alternative is being considered as an option if the Megasite is not developed. However, if the Megasite is developed, then the interchange will require the upgrade improvements previously described in Concepts 1-6.

Other Options Considered during the Planning Process

Two other options were considered during the planning process that focused on improving the existing S.R. 222 bridge and also providing direct access to the Megasite area. The following are brief descriptions of two (2) of these options:

Combination Interchange Option (with Shared Frontage Road between Interchanges):
This option, shown in Figure 2.7, consists of constructing a new trumpet interchange approximately two-thirds ($2 / 3$) mile west of the existing S.R. 222 interchange in conjunction with Concept 1. With this option, an assumption was made to assign 50% of the development traffic to the new trumpet interchange. As a result of the reduced traffic volume on S.R. 222, a three (3) lane section for S.R. 222 is shown with this option. A separate roadway connection is provided from the existing S.R. 222 roadway to the relocated S.R. 222 roadway for access to the Pilot Travel Center and other destinations on the south side of I-40. This option also consists of constructing auxiliary lanes (barrier separated) to link ramp movements between the new trumpet interchange and the ramps for the new S.R. 222 diamond interchange. The frontage
road weave distance between interchanges is 1500 feet (EB) and 2200 feet (WB). Because of the concern regarding the development of the Megasite, plus the extent of construction impacts and the weaving area impacts between interchanges, this option was eliminated from consideration.

Figure 2.7 - Combination Interchange Option (with Shared Frontage Road)

Combination Interchange Option (with Separate Frontage Roads between Interchanges):
This option, shown in Figure 2.8, is similar to the other option with the exception that the new trumpet interchange is located approximately one-half ($1 / 2$) mile west of the existing S.R. 222 interchange and the on/off ramp movements from each interchange are grade separated at the location where the two (2) ramps intersect. This option was eliminated from considerations for the same reasons previously listed in the other option.

Figure 2.8 - Combination Interchange Option (with Separate Frontage Roads)

3.0 ENGINEERING INVESTIGATION

3.1 Traffic Operations

Analysis was made to determine the potential impacts of proposed concept modifications to the existing interchange and the effect these changes may have on the Interstate system.

The capacity of a facility is defined in the Highway Capacity Manual (HCM) as the maximum hourly rate at which vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions. Any change in these conditions will result in a change in the capacity of a facility.

The analysis of highway capacity is a set of procedures used to estimate the traffic-carrying ability of facilities over a range of defined operational conditions known as level-of-service (LOS). LOS is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A LOS definition generally describes these operational conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Table 3.1 presents general descriptions for each LOS.

Table 3.1 - Level-of-Service (LOS) Description

LOS	Level-of-Service (LOS) Description
A	Free Flow operations. Vehicles are almost completely unimpeded in their ability to maneuver within the traffic stream. The general level of physical and psychological comfort provided the driver is high.
B	Reasonably free flow operations. The ability to maneuver within the traffic stream is only slightly restricted and the general level of physical and psychological comfort provided to the driver is high.
C	Flow with speeds at or near free flow. Freedom to maneuver within the traffic stream is noticeably restricted and lane changes require more vigilance on the part of the driver. The driver notices an increase in tension because of additional vigilance required for safe operation.
D	Speeds decline with increasing traffic. Freedom to maneuver within the traffic stream is noticeably limited. The driver experiences reduced physical and psychological comfort levels.
E	At the lower boundary, the facility is at capacity. Operations are volatile because there are virtually no gaps in the traffic stream. There is little or no room to maneuver. The driver experiences poor levels of physical and psychological comfort.
F	Breakdowns in traffic flow. The number of vehicles entering the highway section exceeds the capacity, or ability of the highway to accommodate that number of vehicles. There is little or no room to maneuver. The driver experiences poor levels of physical and psychological comfort.

Source: Highway Capacity Manual (2000), Transportation Research Board
The Highway Capacity Software (HCS) was used to obtain the capacity analysis LOS results presented in this study for different facility types: Basic Freeway Segments, Freeway Ramp Merges, Freeway Ramp Diverges, Multi-Lane Highways, Two-Lane Highways, Signalized Intersections, and Unsignalized Intersections. The HCS printouts for all of the capacity analyses can be found in Appendix C of this report.

Traffic Volumes

The project study area Annual Average Daily Traffic (AADT) Volumes and the Design Hour Volumes (DHV) for the horizon years 2014 and 2034 are shown in Table 3.2.

Table 3.2 - Traffic Volumes (Two-Way) and Truck Percentages

Type	Location	Segment	Traffic Volumes		Truck Pct.
			2014	2034	
AADT	I-40	West of Exit 35	44,420	62,340	35\%
		Exit 35 to Exit 42	43,610	60,510	35\%
		Exit 42 to Exit 47	38,820	55,560	35\%
		East of Exit 47	36,850	53,510	35\%
	$\begin{aligned} & \text { S.R. } 59 \\ & \text { (Exit 35) } \end{aligned}$	North of I-40	4290	5780	3\%
		South of I-40	4440	5990	3\%
	$\begin{aligned} & \text { S.R. } 222 \\ & \text { (Exit 42) } \end{aligned}$	North of I-40	14,490	15,960	10\%
		I-40 to PTC ${ }^{1}$	13,220	16,250	48\%
		South of PTC ${ }^{1}$	4940	6450	3\%
	Dancyville Road (Exit 47)	North of I-40	1700	2040	2\%
		South of I-40	2530	3230	2\%
DHV AM Peak Period	I-40	West of Exit 35	4256	5992	
		Exit 35 to Exit 42	4125	5706	
		Exit 42 to Exit 47	3629	5194	
		East of Exit 47	3396	4937	
	$\begin{aligned} & \hline \text { S.R. } 59 \\ & \text { (Exit 35) } \end{aligned}$	North of l-40	404	555	
		South of I-40	417	575	
	$\begin{aligned} & \text { S.R. } 222 \\ & \text { (Exit 42) } \end{aligned}$	North of I-40	1485	1503	
		I-40 to PTC ${ }^{1}$	673	791	
		South of PTC ${ }^{1}$	462	544	
	Dancyville Road (Exit 47)	North of I-40	199	250	
		South of I-40	206	263	
DHV PM Peak Period	I-40	West of Exit 35	4353	6133	
		Exit 35 to Exit 42	4275	5935	
		Exit 42 to Exit 47	3845	5503	
		East of Exit 47	3652	5298	
	$\begin{aligned} & \text { S.R. } 59 \\ & \text { (Exit 35) } \end{aligned}$	North of I-40	384	531	
		South of I-40	398	549	
	$\begin{aligned} & \text { S.R. } 222 \\ & \text { (Exit 42) } \end{aligned}$	North of I-40	1327	1343	
		I-40 to PTC ${ }^{1}$	667	815	
		South of PTC ${ }^{1}$	400	500	
	Dancyville Road (Exit 47)	North of I-40	169	210	
		South of I-40	212	273	

1. PTC is Pilot Travel Center.

I-40 Mainline Capacity Analyses
The project study area I-40 mainline capacity analysis results for the horizon years 2014 and 2034 are shown in Table 3.3.

Table 3.3 - I-40 Mainline Capacity Analysis Results (Existing Conditions)

Location	Direction	Peak Period	2014	2034
West of Exit 35 (S.R. 59)	EB	AM	C	D
		PM	C	D
	WB	AM	C	D
		PM	C	D
$\begin{gathered} \text { Exit } 35 \text { (S.R. 59) } \\ \text { to } \\ \text { Exit } 42 \text { (S.R. 222) } \end{gathered}$	EB	AM	C	D
		PM	C	D
	WB	AM	B	C
		PM	C	D
```Exit 42 (S.R. 222) to Exit 47 (Dancyville Rd.)```	EB	AM	B	C
		PM	C	D
	WB	AM	B	C
		PM	C	D
East of Exit 47 (Dancyville Rd.)	EB	AM	B	C
		PM	B	C
	WB	AM	B	C
		PM	B	C

I-40 Merge and Diverge Ramp Capacity Analyses
The I-40 merge/diverge ramp capacity analysis results are shown in Table 3.4.

Table 3.4 - I-40 Merge and Diverge Ramps Capacity Analysis Results (Existing Conditions)

Location	Direction	Peak Period	2014	2034
MERGE RAMPS				
$\begin{gathered} \text { I-40 at } \\ \text { Exit } 35 \text { (S.R. 59) } \end{gathered}$	EB Entrance Ramp	AM	C	D
		PM	C	D
	WB Entrance Ramp	AM	C	D
		PM	C	E
$\begin{gathered} \text { I-40 at } \\ \text { Exit } 42 \text { (S.R. 222) } \end{gathered}$	EB Entrance Ramp	AM	C	D
		PM	C	D
	WB Entrance Ramp	AM	C	D
		PM	D	E
I-40 at   Exit 47 (Dancyville Rd.)	EB Entrance Ramp	AM	B	C
		PM	C	D
	WB Entrance Ramp	AM	C	D
		PM	C	D
DIVERGE RAMPS				
$\begin{gathered} \text { I-40 at } \\ \text { Exit } 35 \text { (S.R. 59) } \end{gathered}$	EB Exit Ramp	AM	C	D
		PM	B	C
	WB Exit Ramp	AM	B	C
		PM	C	D
$\begin{gathered} \text { I-40 at } \\ \text { Exit } 42 \text { (S.R. 222) } \end{gathered}$	EB Exit Ramp	AM	B	C
		PM	B	C
	WB Exit Ramp	AM	B	C
		PM	B	C
I-40 at   Exit 47 (Dancyville Rd.)	EB Exit Ramp	AM	B	C
		PM	B	C
	WB Exit Ramp	AM	B	C
		PM	B	C

I-40 Interchange Crossroads Mainline Capacity Analyses
The project study area I-40 interchange crossroads mainline capacity analysis results for the horizon years 2014 and 2034 are shown in Table 3.5.

Table 3.5 - I-40 Interchange Crossroads Mainline Capacity Analysis Results (Existing Conditions)

Crossroad	Location	Direction	Peak Period	2014	2034
S.R. 59   (Exit 35)   [Note: Two-Lane Analyses]	North of I-40	Two-Way	AM	C	C
			PM	B	C
	South of I-40	Two-Way	AM	C	C
			PM	C	C
S.R. 222   (Exit 42)   [Note: Two-Lane Analyses]	North of I-40	Two-Way	AM	D	D
			PM	D	D
	I-40 to PTC ${ }^{1}$	Two-Way	AM	C	C
			PM	C	C
	South of PTC ${ }^{1}$	Two-Way	AM	C	C
			PM	B	C
S.R. 222   (Exit 42)   [Note: Multilane Analyses]	North of I-40	NB	AM	B	B
			PM	A	A
		SB	AM	A	A
			PM	A	A
	I-40 to PTC ${ }^{1}$	NB	AM	A	A
			PM	A	A
		SB	AM	A	A
			PM	A	A
	South of PTC ${ }^{1}$	NB	AM	A	A
			PM	A	A
		SB	AM	A	A
			PM	A	A
Dancyville Road (Exit 47)   [Note: Two-Lane Analyses]	North of I-40	Two-Way	AM	B	B
			PM	A	B
	South of I-40	Two-Way	AM	B	B
			PM	B	B

1. PTC is Pilot Travel Center.
2. The multilane capacity analysis results are shown by direction (NB/SB).

## Ramp Terminal Intersections

The project study area ramp terminal intersection capacity analysis results were conducted for the horizon years 2014 and 2034. The SR 59 (Exit 35) and the Dancyville Road (Exit 47) intersection capacity analysis results are shown in Table 3.6.

Table 3.6 - S.R. 59 (Exit 35) and the Dancyville Road (Exit 47) Ramp Terminal Intersections Capacity Analysis Results (Existing Conditions)

	Approach	Peak Period	S.R. 59 (Exit 35) ${ }^{1}$		Dancyville Road (Exit 47) ${ }^{1}$	
			2014	2034	2014	2034
	Overall	AM	N/A	N/A	N/A	N/A
		PM				
	NB	AM	A	A	A	A
		PM	A	A	A	A
	SB	AM	A	A	A	A
		PM	A	A	A	A
	EB	AM	B	C	A	B
		PM	B	C	A	B
	Overall	AM	N/A	N/A	N/A	N/A
		PM				
	NB	AM	A	A	A	A
		PM	A	A	A	A
	SB	AM	A	A	A	A
		PM	A	A	A	A
	WB	AM	B	C	B	B
		PM	B	C	B	B

1. Unsignalized capacity analysis results.

The S.R. 222 (Exit 42) capacity analysis results for each concept are shown in Table 3.7. The proposed lanes for each concept are depicted graphically in Appendix B.

Table 3.7 - S.R. 222 (Exit 42) Ramp Terminal Intersections Capacity Analysis Results (Existing and Proposed Conditions)

	Approach and Movement		Peak Period	Interchange Types ${ }^{1}$								
			Proposed Conditions	No-Build Alternative (Existing Conditions)								
			Traditional Diamond			Diverging Diamond						
			Concept 1 (Mod. for EB Loop Ramp)			Concepts$2,4,5,6$		Concept 3				
			2014	2034	2014	2034	2014	2034	2014	2034		
	Overall			AM	N/A	N/A	(B)	(B)	(B)	(B)	N/A	N/A
			PM	(B)			(B)	(B)	(B)			
		NB Thru		AM	A	A	(B)	(B)	(B)	(B)	A	A
				PM	A	A	(B)	(B)	(B)	(B)	A	A
		SB ${ }^{2}$		AM	A	A	(A)	(A)	(B)	(B)	A	A
			PM	A	A	(A)	(A)	(B)	(B)	A	A	
		EB Left Turn	AM	$N / A^{4}$	N/A ${ }^{4}$	(B)	(B)	(B)	(B)	F	F	
			PM			(B)	(B)	(B)	(B)	F	F	
		EB Right Turn	AM	B	B	(B)	(B)	(B)	(B)	--- ${ }^{5}$	--- ${ }^{5}$	
			PM	A	B	(B)	(C)	(B)	(B)			
	Overall		AM	(B)	(B)	(B)	(B)	(B)	(B)	N/A	N/A	
			PM	(B)	(B)	(B)	(B)	(B)	(B)			
		$N B^{3}$	AM	(A)	(A)	(A)	(A)	(B)	(C)	A	A	
			PM	(A)	(A)	(A)	(A)	(B)	(B)	B	B	
		SB Thru	AM	(B)	(B)	(B)	(B)	(B)	(B)	A	A	
			PM	(B)	(B)	(B)	(B)	(B)	(B)	A	A	
		WB Left	AM	(B)	(B)	(B)	(B)	(B)	(B)	F	F	
		Turn	PM	(C)	(C)	(C)	(C)	(B)	(B)	F	F	
		WB Right Turn	AM	(C)	(C)	(C)	(C)	(B)	(B)	--- ${ }^{5}$	---5	
			PM	(C)	(C)	(C)	(C)	(B)	(B)			

1. The signalized capacity analysis results are shown in parentheses.
2. The capacity analysis results shown represent the SB Left Turn Movement for the Traditional Diamond Interchange/No-Build concepts and the SB Thru Movement for the Diverging Diamond Interchange concept.
3. The capacity analysis results shown represent the NB Left Turn Movement for the Traditional Diamond Interchange/No-Build concepts and the NB Thru Movement for the Diverging Diamond Interchange concept.
4. The EB Left Turn Movement is free-flow utilizing a one-lane loop ramp to S.R. 222 NB.
5. The EB Right Turn Movement is included in the EB Left Turn Movement (Shared Lane) for the No-Build concept.

As shown in Table 3.7, all of the concepts provide LOS C or better capacity results for all traffic movements with the exception of the No-Build Alternative which produced LOS F capacity results.

## S.R. 222/Pilot Travel Center Intersection

The project study area intersection capacity analysis results for the S.R. 222/Pilot Travel Center intersection was conducted for the horizon years 2014 and 2034. These intersection capacity analysis results are shown in Table 3.8.

Table 3.8 - S.R. 222/Pilot Travel Center Intersection Capacity Analysis Results (Proposed Conditions)

	Approach	Peak Period	$2014{ }^{1}$	$2034{ }^{1}$
	Overall	AM	N/A	N/A
		PM		
	NB	AM	A	A
		PM	A	A
	SB	AM	A	A
		PM	A	A
	WB	AM	B	B
		PM	B	B

1. Unsignalized capacity analysis results.
2. Existing geometry for the intersection: 1 NB Thru/Right Turn Shared Lane, 1 SB Left Turn/Thru Shared Lane, and 1 WB Left Turn/Right Turn Shared Lane.

### 3.2 Crash Analysis

The crash data used in this analysis was provided by TDOT and included reports from 2005 to 2007. A total of twenty-one (21) crashes were reported within the vicinity of the study interchange during this three (3) year period. Of these twenty-one (21) reported crashes, eight (8) occurred along I-40 and thirteen (13) occurred along S.R. 222. A summary of the I-40/S.R. 222 crash data is presented in Table 3.9.

As expected, the predominant types were right angle crashes (7) and rear end crashes (5). The overall severity damage totals included five (5) injury crashes with no incapacitating injury or fatal crashes.

Table 3.9 - I-40/S.R. 222 Crash Data Summary

Description	I-40			S.R. 222			Total	Pct. of Total
	2005	2006	2007	2005	2006	2007		
Rear End	1			2		2	5	23.8\%
Right Angle		1		1	1	4	7	33.3\%
Overturn			1				1	4.8\%
Struck Bridge Rail/Guardrail		2	1	1			4	19.0\%
Struck Other Object (Fixed)		1					1	4.8\%
Struck Animal in Road			1	1			2	9.5\%
Run off the Road				1			1	4.8\%
INVOLVEMENT								
All Vehicles	2	5	3	9	2	12	33	
ROAD SURFACE								
Dry (No Adverse Conditions)	1	2	2	5	1	4	15	71.5\%
Wet (Rain)			1	1		2	4	19.0\%
Snow / Ice		2					2	9.5\%
SEVERITY DAMAGE								
Property Damage Only		4	2	5	1	4	16	76.2\%
Injury Crashes (No Fatalities)	1		1	1		2	5	23.8\%
Incap. Injury Crashes (No Fatalities)							0	-
Fatality Crashes							0	-
Number of Injuries (All Crashes)	2		1	1		2	6	
Number of Fatalities (All Crashes)							0	
CRASH SUMMARY								
Total Crashes	1	4	3	6	1	6	21	100\%
Percentage of Total	4.8\%	19.0\%	14.3\%	28.6\%	4.8\%	28.6\%		

### 3.3 S.R. 222 Bridge Inspection Report

The latest bridge inspection report was conducted on December 14, 2010. During this inspection, the overall condition of the study bridge was determined to be "Fair" and having a sufficiency rating of 63.2. Repairs to correct previously identified deficiencies to the bridge structure and the bridge rails were made in 2008.

### 3.4 Wastewater Treatment Facility

An existing wastewater treatment facility is located in the southeast quadrant of the l-40 at S.R. 222 interchange adjacent to the Deerfield Inn. This facility is owned by the Pilot Travel Center and serves both the Pilot Travel Center and the Deerfield Inn. This treatment facility consists of a series of septic tanks with sand filters, discharging to a pond adjacent to the right of way for I-40.

Concepts 1, 2, and 3 will require the relocation of this wastewater treatment facility. An area adjacent to the present location is available and noted on each of these three (3) concept figures contained in Appendix B. A representative of the Tennessee Department of Environment and Conservation (TDEC) stated that due to heavy vegetation around the pond and since there is no history of noted problems at this location, the facility is apparently functioning very efficiently and could be relocated with no anticipated problems. If a wastewater treatment system cannot be provided, a worst-case scenario of approximately $\$ 7.0$ million has been estimated by TDOT for the acquisition of two businesses (Pilot Travel Center and Deerfield Inn). However, this worst-case scenario should not be an issue and should be resolved in design especially with all of the various technologies available.

### 3.5 Interchange Concept Evaluation Summary

During the course of the study, the six (6) interchange concepts along with the No-Build Alternative, described in Section 2.4, were discussed with TDOT, FHWA, and the ECD. The design criteria considered included, but was not limited to, sight distance at ramp terminals, sufficient storage on the ramps, vertical clearance, pedestrian access through the interchange, length of acceleration/deceleration lanes, length of tapers, spacing between ramps, lane continuity, lane balance, and uniformity in interchange design and operational patterns. Through these discussions, two (2) concepts were determined to be viable while the four (4) others were removed from further consideration for a variety of reasons. A summary of these concepts are included in the following paragraphs.

## Viable Concepts

Concepts 1 and 5, shown in Figures 3.1 and 3.2 respectively, were determined viable for this study.

Concept 1 satisfies the travel demands of the interchange especially since the major traffic movement within the interchange (l-40 eastbound to S.R. 222 northbound) would be free-flow via a single lane loop ramp, as compared to Concept 2 that requires the signalization of this traffic movement. The total estimated cost for Concept 1 is $\$ 13.1$ million.

Concept 5 satisfies the 300 feet of controlled access limits for this interchange and does not include a separate frontage road paralleling S.R. 222, as compared to Concept 4. On the south side of the interchange, direct access to businesses south of l-40 is maintained in Concept 5, but two (2) existing driveways are affected along S.R. 222. These driveways include the closure of the first (or closest) driveway from I-40 to the Exxon gas station/convenience store along the west side of S.R. 222 and the relocation of the Deerfield Inn driveway approximately fifty (50) feet southward along the east side of S.R. 222. Even though this concept includes the widening of S.R. 222 adjacent to the church/cemetery site in the southwest quadrant of the interchange, all of the widening impacts are on the east side of S.R. 222 resulting in no construction impacts to the church/cemetery site. The total estimated cost for Concept 5 is $\$ 13.2$ million.

The No-Build Alternative was determined viable if the Megasite is not developed. If the Megasite is developed, then the No-Build Alternative is a non-viable concept because the capacity of the existing interchange will not be satisfied (LOS F conditions) in the future 2034 design year.

Between the viable construction concepts, TDOT and ECD both prefer Concept 1 since the I-40 eastbound to S.R. 222 northbound traffic movement would be free-flow via a single lane loop ramp and removed from signalization as required with Concept 5 . This traffic movement is the highest turning movement within the interchange totaling 586 vehicles during the 2034 morning peak period.

## Non-Viable Concepts

Concept 2 (Traditional Diamond Interchange East of the Existing Interchange) was determined not viable and eliminated because the I-40 eastbound to S.R. 222 northbound traffic movement within the interchange must travel through a signalized intersection at the ramp terminal instead of the single lane free-flow loop ramp provided in Concept 1. This is the highest traffic movement within the study interchange and since it will be controlled through signalization in this concept, it would contain vehicular delays for this movement that would not be present in Concept 1. Safety considerations of this traffic driving through a signalized intersection vs. freeflow were also considered during the elimination process. As a result, this concept was removed from further consideration.

Concept 3 (Diverging Diamond Interchange East of the Existing Interchange) was determined not viable because the traffic patterns do not provide a good fit for a diverging diamond footprint, especially with both of the S.R. 222 left turn traffic volumes being less than 226 vehicles during the 2034 morning and afternoon peak periods. The major traffic movement is the l-40 eastbound to S.R. 222 northbound which would require signalization similar to Concept 2 . The motorists speed would require being reduced through their navigation within the interchange. As a result, this concept was removed from further consideration.

Concept 4 (Traditional Diamond Interchange) was determined not viable because the 300 feet of controlled access limits for this interchange could not be achieved. On the south side of the interchange, direct access to businesses south of I-40 is maintained in Concept 4, but the 300 feet of controlled access limits for this interchange cannot be achieved along the west side of S.R. 222 south of the interchange. In order to meet the 300 feet of controlled access limits along the east side of S.R. 222 south of the interchange, a frontage road was developed that parallels S.R. 222 and intersects S.R. 222 about 400 feet south of Hebron Road. This frontage road requires the acquisition of right-of-way along the Pilot Travel Center property adjacent to S.R. 222 which includes business impacts such as parking and truck maneuverability within the site. This interchange concept is the same as Concept 5 with the exception that in Concept 5, the 300 feet of controlled access limits can be achieved with the relocation of the eastbound ramps closer to $\mathrm{l}-40$ in conjunction with the closure/relocation of two (2) existing driveways. As a result, this concept was removed from further consideration.

Concept 6 (Traditional Diamond Interchange West of the Existing Interchange) was determined not viable. The main reason is that the horizontal and vertical alignment geometry would be of concern as a result of the number of turns required along the proposed route. As a result, this concept was removed from further consideration.



### 3.6 Access Analysis (FHWA Eight Policy Points)

This study is undertaken in accordance with the Federal Highway Administration's (FHWA) eight policy points as outlined in the document entitled "Interstate System Access Informational Guide". These eight policy points address the appropriate issues and provide the information necessary to allow the FHWA to make an informed decision considering the potential consequences of a change in access. The eight (8) policy points are listed below in bulleted italics, followed by the response as analyzed for this location.

1. The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).

The request for upgrading the study interchange was initiated by the Tennessee Department of Economic and Community Development (ECD) on behalf of the Tennessee Valley Authority (TVA). The proposed improvements for the study interchange are essential to the development of the Megasite located on the north side of I-40 within the study area. The expected increases in both population and development activity related to the Megasite will reduce the traffic operating conditions to LOS F with the current interchange configuration (i.e. No-Build Alternative). It is crucial for this development of regional significance that a modified and improved interchange access be considered to preserve efficient traffic operations in the region. The current adjacent interchanges are too far way (approximately five (5) and seven (7) miles to the adjacent interchanges) to accommodate development traffic and the local routes by themselves will not accommodate the travel patterns, nor be the preferred routes, for the employment base, suppliers, and distributors.

During the latest bridge inspection, the overall condition of the study bridge was determined to be rated as fair with a sufficiency rating of 63.2. TDOT Structures Division has determined that the existing bridge consists of four (4) spans and is not a candidate for retrofit and needs to be replaced for the following reasons:

- Any new bridge would be a two (2) span structure for the safety of motorists travelling on I-40.
- A two (2) span structure would accommodate any future widening of I-40 without additional bridge modifications.
- The cost of widening the existing structure to accommodate the required travel lanes plus full shoulders would be greater than the cost of replacing the entire structure.

The ECD has agreed to provide $100 \%$ of the funding for the preparation of the Preliminary Engineering documents for the S.R. 222 construction improvements. Even though there are no confirmed developments for the Megasite, the ECD envisions that all of the paperwork including construction design documents be completed and are shovel-ready projects when a tenant for the Megasite is identified so that the roadway improvements can be in place in conjunction with the opening of the Megasite.

If the Megasite is developed, the Megasite will serve a regional need with primary access from I-40 via the Exit 42 interchange. All proposed improvements currently identified in the State/Regional Long Range Transportation Plan (LRTP) have been included in this study. In
conjunction with the development of the Megasite, additional improvements to S.R. 222 will be recommended to the north of the interchange study limits.
2. The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access. The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).

This study area covered a sufficient area to allow for the evaluation of different types of interchange configurations such as a traditional diamond, a modified traditional diamond containing a loop ramp in one quadrant, a combined traditional/tight diamond, and a diverging diamond. In addition, this study included the evaluation of different intersection configurations such as stop control, signal control, and free right turns. The No-Build Alternative was also included in the analyses.

The location of the study interchange for the two (2) viable concepts is the best location as it is at or in extremely close proximity to the existing interchange location. The proposed improvements do not include pedestrian and bicycle accommodations at this time since such facilities are not currently provided along the existing S.R. 222 roadway system nor typical in this rural area.

Safety issues related to the existing interchange cannot be addressed through Transportation Systems Management (TSM) strategies. There is no mass transit service in the area of the interchange. HOV facilities are not available or planned along the I-40 mainline study area. The widening of $\mathrm{I}-40$ to six (6) lanes may be constructed by the 2034 planning horizon. Even with the addition of I-40 mainline lanes, the functionality of the existing study interchange will be deficient without the proposed improvements.
3. An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

The 2014 and 2034 design traffic volumes analyzed in this study were approved by TDOT and a copy of the approval letter is contained in Appendix A. The capacity analyses conducted in this study utilized Highway Capacity Manual procedures and included the following facility types: Basic Freeway Segments, Freeway Ramp Merges, Freeway Ramp Diverges, Multi-Lane Highways, Two-Lane Highways, Signalized Intersections, and Unsignalized Intersections. The capacity analyses included the Pilot Travel Center intersection with S.R. 222 because of the high percentage of trucks (48\%) utilizing this facility. Results of the capacity analyses presented in Section 3.1 indicate that no significant traffic operational issues are expected with construction improvements of the viable concepts (Concepts 1 and 5). The No-Build Alternative indicates that if no improvements are made to the study interchange, then LOS F traffic conditions will be expected if the Megasite is developed. All of the proposed improvements for each concept satisfactorily accommodate the 2014 and 2034 design traffic volumes. The results from the capacity analyses are summarized in Tables 3.3 to 3.8 .

For the two (2) viable concepts, the proposed access point is either relocated approximately 500 feet eastward on I-40 (Concept 1) or at the same location (Concept 5). The adjacent I-40 interchanges, Exit 35 (S.R. 59) and Exit 47 (Dancyville Road), are approximately seven (7) miles to the west and five (5) miles to the east along l-40.

In addition, a proposed interchange discussed in Section 1.4 is located between the study interchange and Exit 47 (Dancyville Road) approximately 1.1 miles east of the study interchange. As a result of this distance, the existing adjacent interchanges, as they relate to this proposed interchange, are outside the influence of traffic weaving conditions along I-40.

The proposed interchange access provides connections to S.R. 222 and other public roads in the vicinity of the interchange such as Hebron Road and Thorpe Drive and will not require upgrading of those facilities. The proximity of both Hebron Road and Thorpe Drive do not contribute to any safety and operational problems associated with the study interchange. On both the north and south sides of the study interchange, the 300 feet of controlled access limits are satisfied for the two (2) viable concepts (Concepts 1 and 5).

The State Strategic Highway Safety Plan was used as a benchmark on safety for this study. However, as mentioned in Policy Point 2, the proposed improvements do not include pedestrian and bicycle accommodations because such facilities are not currently provided in the existing roadway system. In addition, a conceptual signing plan for Concepts 1 and 5 are contained in Appendix B. The conceptual signing plan for Concept 1 shows that the I-40 eastbound will require the use of $A$ and $B$ exits to distinguish between S.R. 222 northbound and southbound traffic movements.
4. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).

The existing study interchange currently serves, and the proposed improvements will provide for all traffic movements for full interchange access. The proposed improvements secure sufficient ROW by utilizing either available existing ROW or through the acquisition of proposed ROW. Concepts 1 and 5 require the approximate ROW acquisition of 25.5 acres and 2.2 acres, respectively.

As mentioned in Policy Point 3, the proposed interchange access provides connections to S.R. 222 and other public roads in the vicinity of the interchange such as Hebron Road and Thorpe Drive and meets and/or exceeds current design standards for the Interstate System. No design exceptions are anticipated with either Concept 1 or Concept 5. All traffic movements have been analyzed during the 2014 and 2034 design years for each concept and have been summarized in Table 3.7.
5. The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.
This study includes coordination with other projects as discussed in Section 1.4. and the proposed improvements are consistent and conform with applicable local, regional, and statewide land use and transportation plans. The study interchange is in the current 2012-14 TIP (TDOT Proposed Comprehensive Multimodal Program) funded for ROW in FY 2013.

The location of the study interchange is not within a Transportation Management Area (TMA) and is not within a non-attainment area for air quality. As mentioned in Policy Point 3, the proposed access point for the two (2) viable concepts is either relocated approximately 500 feet eastward on I-40 (Concept 1) or at the same location (Concept 5).
6. In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).

This study does not preclude or affect future access points along I-40 and the proposed improvements satisfy the future needs for the study interchange. However, if the Megasite is developed and the travel demand of the Megasite exceeds the capacity of these proposed interchange improvements, the potential construction of the new interchange near Mile Marker 45, shown in Figure 1.5, could be considered in the future.
7. When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).

This study was coordinated with the adjacent Megasite area because of its close proximity to the study interchange. Table 2.2 summarizes the trips generated for the Megasite which were considered conservative and a worst-case scenario. The improvements recommended in this study interchange are integral to adequately accommodating projected traffic volumes and operations if the Megasite is developed.

As mentioned in Policy Point 3, the proposed improvements in this study are compatible and provide adequate tie-in connections to the existing street network. As discussed in Section 1.4, this study has been coordinated with the S.R. 222 Relocation \& System Improvements Feasibility Study to ensure that the immediate and long-term needs of the study area will be met. In addition, if the potential interchange near Mile Marker 45 is constructed, a State Industrial Access (SIA) road to the Megasite will be necessary to access S.R. 222 on the north side of the study interchange as shown in Figure 1.5. The location of the SIA road will have no direct impacts to the operations of the study interchange because of their proposed distance apart from each other.

There are no pre-condition contingencies related to the adjacent projects that are required for this study. In addition, this study does not require financial or infrastructure commitments from other agencies, organizations, or private entities.

> 8. The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111 ).

This study was developed in coordination with TDOT and documents the expected impacts and benefits from modifying the existing l-40 interchange at Exit 42 (S.R. 222). If the Megasite is developed and with the proposed modifications contained in this IMS report, the overall traffic operations at the study interchange can be adequately accommodated through the 20 -year horizon year (2034).

As mentioned in Policy Point 5, this study is consistent with the current 2012-14 STIP (TDOT Proposed Comprehensive Multimodal Program) funded for ROW in FY 2013. The known environmental issues are provided in Section 2.2. When this study receives a finding of Operational and Engineering Acceptability, it will then be necessary to begin conducting additional environmental studies as outlined in the NEPA planning process.

The FHWA Prompt-List for Reviewing Interstate Access Requests for Concepts 1 and 5 are provided on the following pages.

## Concept 1 Review

## Prompt List for Review of Interstate System Access Change Requests

Adequately Addressed?		FHWA Interstate Access Policy Points
Yes	No	
X		Policy Point 1: The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).
X		Policy Point 2: The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).
X		Policy Point 3: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative ( 23 U.S.C. 109(d) and 23 CFR 655.603(d)).
X		Policy Point 4: The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).
X		Policy Point 5: The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.
X		Policy Point 6: In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).
X		Policy Point 7: When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).
X		Policy Point 8: The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).

## Concept 1 Review

Policy Point 1: "The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the access request clearly describe the need and purpose of the proposal and identify project goals and objectives that are specific and measurable?	Sect. 1.2 and 3.6 (PP1)
X			Is the proposal in the best interest of the public, or does it merely serve a narrow interest?	Sect. 1.2 (P1) and 3.6 (PP1)
X			Is the proposal serving a regional transportation need, or is it merely compensating for deficiencies in the local network of arterials and collectors?	Sect. 1.2 (P1) and 3.6 (PP1)
		X	In lieu of granting new access, is there any reasonable alternative consisting of improvements to the existing roadway(s) or adjacent access points that could serve the need and purpose?	This request is for modification of an existing interchange.
X			Has the evaluation of existing interchanges and the local road network taken into account all proposed improvements currently identified in the State and/or Regional Long Range Plan?	Sect. 3.6 (PP5-P1)
X			Will the proposed change in access result in needed upgrades or improvements to the cross road for a significant distance away from the interchange?	Sect. 1.4 (SR 222 Study), 2.4, and 3.6 (PP1-P3); Fig. 3.1 and 3.2; App. B

Policy Point 2: "The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Was FHWA actively involved in preliminary studies and decisions? If not, then more detailed information may be required in support of proposed action.	FHWA attended a design concept meeting at TDOT on 8/23/2010.   Sect. 3.5 (P1)
X			Did the study area cover sufficient area to allow for an evaluation of all reasonable alternatives?	Sect. 1.3 (P3), 2.4 (Traffic Volume Diagrams), and 3.6 (PP2); Fig. 1.1
X			Was a No-Build Alternative evaluated?	Sect. 2.4 (P1)(No-Build Alternative), 3.1 (Ramp Terminal Intersections), 3.5 (Viable Concepts), 3.6 (PP2-P1)(PP3-P1), and 4.0 (P1\&P2); Tables 2.3 and 3.7
X			Considering the context of the proposal, is this the best location for the proposed new interchange?	Sect. 3.5 (P1) and 3.6 (PP2P2)
X			Were different interchange configurations (Tight diamond, SPDI, Parclo) considered?	AASHTO Greenbook Chapter 10 Sect. 2.4 (Concepts) and 3.6 (PP2-P1); Table 2.3
X			Were pedestrians and bicyclists considered in the alternative evaluation?	$\begin{aligned} & \text { Sect. 3.6 (PP2-P2) and } 3.6 \\ & \text { (PP3-P4) } \end{aligned}$
X			Was there an evaluation of different intersection configurations (stop control, signal, roundabout, free right turns, etc?)	Sect. 3.1 (P4) and 3.6 (PP2P1); Tables 3.7 and 3.8
X			Have Transportation Systems Management (i.e. HOV, ITS, Ramp Metering, Transit etc.) options been evaluated as an alternative to a new or modification to an existing interchange?	This request is for modification of an existing interchange.   Sect. 3.6 (PP2-P3)

## Concept 1 Review

X			Did the report discuss how TSM alternatives were evaluated and   eliminated from consideration?	Sect. 3.6 (PP2-P3)
	X		Does the proposal consider any future planned TSM strategies and is the   design consistent with the ability to implement the future TSM   strategies?	The design is consistent with   future TSM strategies, but   none were considered in the   study.

Policy Point 3: "An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the report demonstrate that a proper traffic operational analysis was conducted? The analysis should include the applicable basic freeway segments, freeway weaving segments, freeway ramp segments, ramp junctions and crossroad intersections related to the proposed access point and at least the two adjacent interchanges.	Sect. 3.1(P4) and 3.6 (PP3P1); Tables 3.3-3.8
X			Does the report include a safety analysis of the mainline, ramps and intersections of the proposed access point and the nearest adjacent interchange (provided they are near enough that it is reasonable to assume there may be impacts)?	Sect. 3.1 (P4), 3.5 (P1), and 3.6 (PP3-P1\&P2); Tables 3.3-3.8
X			Has the design traffic volume been validated?	Sect. 2.3 (P1) and 3.6 (PP3P1)
X			Does the report include verification that the data used in the traffic analysis is consistent with the traffic and air quality models MPOs use to develop their current Transportation Plan (20-year) and Transportation Improvement Program (TIP)?	Sect. 2.3 (P1); App. A
X			Does the report include a design period of 20 years commencing at the time of project approval (PS\&E approval)?	Sect. 2.3 (Horizon Years and Time Periods Analyzed)
X			Does the report include quantitative analyses and results to identify operational differences between alternatives that are heavily congested?	Sect. 3.1 (Ramp Terminal Intersections) and 3.6 (PP2P1); Table 3.7
X			Has a conceptual signing plan been provided?	Viable Concepts 1\&5; Sect. 3.6 (PP3-P4); App. B
X			Is guidance signing (i.e., way-finding or trail blazing signs) clear and simple?	MUTCD Chapter 2E: Guide   Signs - Freeways and   Expressways   Sect. 3.6 (PP3-P4)
	X		Do the results of the operational analysis result in a significant adverse impact to existing or future conditions?	Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X			Will the proposed change in access result in needed upgrades or improvements to the cross road for a significant distance away from the interchange? If so, have impacts to the local network been disclosed and fully evaluated?"	SR 222 would be upgraded as part of the Megasite development.   Sect. 2.4 (P2) and 3.6 (PP1P3)

## Concept 1 Review

X		Are the cross roads or adjacent surface level roads and intersections affected by the proposed access point analyzed to the extent (length) where impacts caused or affecting the new proposed access point are disclosed to the appropriate managing jurisdiction?	Sect. 3.6 (PP3-P3) and 4.1 (Local Agency Letters)
X		Are pedestrian and/or bicycle facilities included (as appropriate) and do these facilities provide for reasonable accommodation?	Sect. 3.6 (PP2-P2) and 3.6 (PP3-P4)
X		Does the proposed access secure sufficient Limits of Access adjacent to the Interchange ramps?	AASHTO's "A Policy on Design Standards Interstate System, 2005" Pg. 2; NCHRP Synthesis 332 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X		Does the proximity of the nearest crossroad intersections to the ramps contribute to safety or operational problems? Can they be mitigated??	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3)
	X	In addition to HCS, what analysis tools were employed and were they appropriate?	HCS only.
X		Has the proposal distinguished between nominal safety (i.e. adherence to design policies and standards) and substantive safety (actual and expected safety performance)?	Safety was considered throughout the study in the development of the concepts.   Fig. 3.1 and 3.2; App. B
X		Will any individual elements within the recommended alternative be degraded operationally as a result of this action? If yes, are reasons provided to accept them?	Acceptable LOS were obtained from the capacity analysis results.   Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		In evaluating whether the proposal has a "significant adverse impact" on safety, has the State Strategic Highway Safety Plan been used as a benchmark?	Safety was considered throughout the study in the development of the concepts.   Sect. 3.6 (PP3-P4); Fig. 3.1   and 3.2; App. B
X		Are the proposed interchange design configurations able to satisfactorily accommodate the design year traffic volumes?	Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		If the project is to be built in stages, has the traffic operational and safety analyses considered the interim stages of the proposal?	Project is being built in one stage.

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the proposed access connect to a public road?	Sect. 2.4 (P2), 3.5 (P1), 3.6 (PP3-P3), and 3.6 (PP4-P2); Fig. 3.1 and 3.2; App. B
X			Are all traffic movements for full interchange access provided?	Sect. 2.4 (P2), 3.5, and 3.6 (PP4-P1); Fig. 3.1 and 3.2; App. B
		X	If not, is the proposed access for special purposes such as transit vehicles, HOVs, and/or a park and ride lot?	Providing for a full interchange.
		X	If a partial interchange is proposed, is there sufficient justification for providing only a partial interchange?	AASHTO Greenbook 2004 Pg. 821-823   Providing for a full interchange.
		X	If a partial interchange is proposed; was a full interchange evaluated as an alternative and is there sufficient justification to eliminate or discard it?	Providing for a full interchange.

## Concept 1 Review

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
		X	Is sufficient ROW available (or being acquired) to provide a full interchange at a future date (staged construction)?	Providing for a full interchange.
		X	Are you comfortable with how the missing movements will be accommodated on the surface streets and adjacent interchanges?	Providing for a full interchange.
X			Does FHWA support the selection of design controls/criteria and desired operational goals?	Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.5 (P1), and 3.6 (PP4-P2); Tables 3.3-3.8
X			Does the proposed access meet or exceed current design standards for the Interstate System?	AASHTO's Greenbook and A Policy on Design Standards Interstate System, 2005   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
		X	If not, have anticipated design exceptions been identified and reviewed (at least conceptually)?	Concept meets current design standards
		X	If expected design exceptions could have significant operational impacts on the Interstate and/or Crossroad system, are mitigation measures described?	Concept meets current design standards
X			Will the length of access control along the crossroad provide for acceptable operations and safety? (100-300' is a minimum. Additional access control is strongly encouraged when needed for safety and operational enhancement)	AASHTO "A Policy on Design Standards Interstate System" 2005 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X			Does FHWA support selection of opening and design years?	Sect. 2.3 (Horizon Year and Time Periods Analyzed)
X			Has each movement of the proposal been "tested" for ease of operation?	AASHTO Greenbook 2004 Pg. 863   Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.6 (PP3-P1), and 3.6 (PP4P2); Table 3.7

Have all design criteria (including but not limited to the following) been adequately addressed?

X			a. Sight distance at ramp terminals (Don't overlook signal heads   obscured by structures.)	AASHTO Greenbook 2004   Pg. 841   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			b. Sufficient storage on ramp to prevent queues from spilling on to the   Interstate (based on current and/or future projected traffic demand)	Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			c. Vertical clearance	AASHTO "A Policy on   Design Standards Interstate   System" 2005   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			d. Pedestrian access through the interchange	AASHTO Greenbook 2004   Pg. 864   Sect. 2.4 (Concepts), 3.5
(P1), and 3.6 (PP2-P2) and				
3.6 (PP3-P4)				

## Concept 1 Review

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			f. Length of tapers	AASHTO Greenbook 2004   Pg. 849   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			g. Spacing between ramps	Greenbook pg 843 \& Ex. 1068 and operational analysis Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			h. Lane continuity	AASHTO Greenbook 2004   Pg. 810   Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			i. Lane balance	AASHTO Greenbook 2004 Pg. 810 AASHTO Greenbook 2004 Pg. 807 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			j. Uniformity in interchange design and operational patterns (i.e. rightside ramps, exit design consistent w/adjacent interchanges)	Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)

Policy Point 5: "The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450 , and the transportation conformity requirements of 40 CFR parts 51 and 93. ."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the IJR discuss or include (as appropriate) other project(s), studies or planned actions that may have an effect on the report analysis results?	Sect. 1.4 (4 Projects Listed) and 3.6 (PP5-P1)
X			Does the project conform to the local planning, MPO or other related plans?	Sect. 3.6 (PP5-P1)
		X	Does the report include an endorsement of land use plans by the appropriate government entity before it is utilized for traffic generation purposes?	Existing land use is rural agriculture
X			Is the access request located within a Transportation Management Areas? (TMAs are metropolitan areas of 200,000 or more in population)	http://hepgis.fhwa.dot.gov/he pgis_v2/Urbanboundaries/M ap.aspx   Sect. 3.6 (PP5-P2)
X			Is the access request located within a non-attainment area for air quality? (requests for access in a non-attainment or maintenance areas for air quality must be a part of a conforming transportation plan)	Sect. 3.6 (PP5-P2)
X			Is the project included in the TIP/STIP and LRTP?	Sect. 3.6 (PP5-P1)
X			Is the access point covered as a part of an Interstate corridor study or plan? (especially important for areas where the potential exists for construction of future adjacent interchanges)	Sect. 3.6 (PP5-P2)

Policy Point 6: "In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111)."

Question
Reference Location

## Concept 1 Review

$\mathbf{Y}$	$\mathbf{N}$	$\mathbf{N} / \mathbf{A}$		
X			Is it possible that new interchange(s) not addressed in the IJR could be   added within an area of influence to the proposed access point? (If so,   could the proposal preclude or otherwise be affected by any future access   points?)	Sect. 3.6 (PP6-P1\&P2)
X		X	Does the IJR report include the traffic volumes generated by any future   additional interchanges within a vicinity of influence that are proposed?	No planned future   interchanges.
		Does the IJR report fail to include any other proposed interstate access   points within a vicinity of influence that are being proposed or are in the   current long range construction program?	Sect. 1.4 (1 Potential Project   Listed) and 3.6 (PP6-   P1\&P2)	

Policy Point 7: "When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the access request adequately demonstrate that an appropriate effort of coordination has been made with appropriate proposed developments?	Sect. 2.3 (Megasite and Other Assumed Developments) and 3.6 (PP7-P1); Table 2.2
X			Are the proposed improvements compatible with the existing street network or are other improvements needed?	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3); Fig. 3.1 and 3.2; App. B
X			Are there any pre-condition contingencies required in regards to the timing of other improvements?	Sect. 3.6 (PP7-P3)
X			Have all commitments to improve the local transportation network been included in a TIP/STIP/LRTP prior to the Interstate access approval (final approval of NEPA document)?	Sect. 1.4 (P1) and 3.6 (PP7P2)
		X	If pre-condition contingencies are required, are pertinent parties in agreement with these contingencies and is this documented?	No pre-conditions are required.
		X	If the proposed improvements are founded on the need for providing access to new development, are appropriate commitments in place to ensure that the development will likely occur as planned?	No commitments are required.
		X	If project is privately funded, are appropriate measures in place to ensure improvements will be completed if the developer is unable to meet financial obligations?	Project is not privately funded.
X			If the purpose and need to accommodate new development/traffic demands aren't fully known, is a worst case scenario used for future traffic?	Sect. 2.3 and 3.6 (PP7-P1); Table 2.2
X			Does the project require financial or infrastructure commitments from other agencies, organizations, or private entities?	Sect. 3.6 (PP7-P3)

Policy Point 8: "The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental
processing (23 CFR 771.111)."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Are there any known social or environmental issues that could affect the proposal?	Sect. 2.2 (P1\&P2) and 3.6 (PP8-P2)
X			Is the project consistent with the current TIP/STIP and LRTP and/or proposed amendments to the plan?	Sect. 3.6 (PP5-P1)(PP8-P2)
X			Although NEPA is a separate action, is an environmental overview for the proposed improvements included?	Sect. 2.2 (P2) and 3.6 (PP8P2)

## Concept 1 Review

X			Is it appropriate to emphasize to the project stakeholders that the access   approval will be handled as a two-step process? (i.e. Step 1: Engineering   and Operational Acceptability and Step 2: Environmental Approvals)	Sect. 3.6 (PP8-P2)   X

Reference Location Legend: P\# = Paragraph Number; PP\# = Policy Point Number

## Concept 5 Review

## Prompt List for Review of Interstate System Access Change Requests

Adequately Addressed?		FHWA Interstate Access Policy Points
Yes	No	
X		Policy Point 1: The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a)).
X		Policy Point 2: The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a)).
X		Policy Point 3: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative ( 23 U.S.C. 109(d) and 23 CFR 655.603(d)).
X		Policy Point 4: The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)).
X		Policy Point 5: The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450, and the transportation conformity requirements of 40 CFR parts 51 and 93.
X		Policy Point 6: In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111).
X		Policy Point 7: When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements ( 23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d)).
X		Policy Point 8: The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental processing (23 CFR 771.111).

## Concept 5 Review

Policy Point 1: "The need being addressed by the request cannot be adequately satisfied by existing interchanges to the Interstate, and/or local roads and streets in the corridor can neither provide the desired access, nor can they be reasonably improved (such as access control along surface streets, improving traffic control, modifying ramp terminals and intersections, adding turn bays or lengthening storage) to satisfactorily accommodate the design-year traffic demands (23 CFR 625.2(a))."

Addressed   Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the access request clearly describe the need and purpose of the proposal and identify project goals and objectives that are specific and measurable?	Sect. 1.2 and 3.6 (PP1)
X			Is the proposal in the best interest of the public, or does it merely serve a narrow interest?	Sect. 1.2 (P1) and 3.6 (PP1)
X			Is the proposal serving a regional transportation need, or is it merely compensating for deficiencies in the local network of arterials and collectors?	Sect. 1.2 (P1) and 3.6 (PP1)
		X	In lieu of granting new access, is there any reasonable alternative consisting of improvements to the existing roadway(s) or adjacent access points that could serve the need and purpose?	This request is for modification of an existing interchange.
X			Has the evaluation of existing interchanges and the local road network taken into account all proposed improvements currently identified in the State and/or Regional Long Range Plan?	Sect. 3.6 (PP5-P1)
X			Will the proposed change in access result in needed upgrades or improvements to the cross road for a significant distance away from the interchange?	Sect. 1.4 (SR 222 Study), 2.4, and 3.6 (PP1-P3); Fig. 3.1 and 3.2; App. B

Policy Point 2: "The need being addressed by the request cannot be adequately satisfied by reasonable transportation system management (such as ramp metering, mass transit, and HOV facilities), geometric design, and alternative improvements to the Interstate without the proposed change(s) in access (23 CFR 625.2(a))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Was FHWA actively involved in preliminary studies and decisions? If not, then more detailed information may be required in support of proposed action.	FHWA attended a design concept meeting at TDOT on 8/23/2010.   Sect. 3.5 (P1)
X			Did the study area cover sufficient area to allow for an evaluation of all reasonable alternatives?	Sect. 1.3 (P3), 2.4 (Traffic Volume Diagrams), and 3.6 (PP2); Fig. 1.1
X			Was a No-Build Alternative evaluated?	Sect. 2.4 (P1)(No-Build Alternative), 3.1 (Ramp Terminal Intersections), 3.5 (Viable Concepts), 3.6 (PP2-P1)(PP3-P1), and 4.0 (P1\&P2); Tables 2.3 and 3.7
X			Considering the context of the proposal, is this the best location for the proposed new interchange?	$\begin{aligned} & \text { Sect. } 3.5 \text { (P1) and } 3.6 \text { (PP2- } \\ & \text { P2) } \end{aligned}$
X			Were different interchange configurations (Tight diamond, SPDI, Parclo) considered?	AASHTO Greenbook Chapter 10 Sect. 2.4 (Concepts) and 3.6 (PP2-P1); Table 2.3
X			Were pedestrians and bicyclists considered in the alternative evaluation?	Sect. 3.6 (PP2-P2) and 3.6 (PP3-P4)
X			Was there an evaluation of different intersection configurations (stop control, signal, roundabout, free right turns, etc?)	Sect. 3.1 (P4) and 3.6 (PP2P1); Tables 3.7 and 3.8
X			Have Transportation Systems Management (i.e. HOV, ITS, Ramp Metering, Transit etc.) options been evaluated as an alternative to a new or modification to an existing interchange?	This request is for modification of an existing interchange.   Sect. 3.6 (PP2-P3)

## Concept 5 Review

X			Did the report discuss how TSM alternatives were evaluated and   eliminated from consideration?	Sect. 3.6 (PP2-P3)
	X	Does the proposal consider any future planned TSM strategies and is the   design consistent with the ability to implement the future TSM   strategies?	The design is consistent with   future TSM strategies, but   none were considered in the   study.	

Policy Point 3: "An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis shall, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (23 CFR 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, shall be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access must include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request must also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the report demonstrate that a proper traffic operational analysis was conducted? The analysis should include the applicable basic freeway segments, freeway weaving segments, freeway ramp segments, ramp junctions and crossroad intersections related to the proposed access point and at least the two adjacent interchanges.	Sect. 3.1(P4) and 3.6 (PP3P1); Tables 3.3-3.8
X			Does the report include a safety analysis of the mainline, ramps and intersections of the proposed access point and the nearest adjacent interchange (provided they are near enough that it is reasonable to assume there may be impacts)?	Sect. 3.1 (P4), 3.5 (P1), and 3.6 (PP3-P1\&P2); Tables 3.3-3.8
X			Has the design traffic volume been validated?	Sect. 2.3 (P1) and 3.6 (PP3P1)
X			Does the report include verification that the data used in the traffic analysis is consistent with the traffic and air quality models MPOs use to develop their current Transportation Plan (20-year) and Transportation Improvement Program (TIP)?	Sect. 2.3 (P1); App. A
X			Does the report include a design period of 20 years commencing at the time of project approval (PS\&E approval)?	Sect. 2.3 (Horizon Years and Time Periods Analyzed)
X			Does the report include quantitative analyses and results to identify operational differences between alternatives that are heavily congested?	Sect. 3.1 (Ramp Terminal Intersections) and 3.6 (PP2P1); Table 3.7
X			Has a conceptual signing plan been provided?	Viable Concepts 1\&5; Sect. 3.6 (PP3-P4); App. B
X			Is guidance signing (i.e., way-finding or trail blazing signs) clear and simple?	MUTCD Chapter 2E: Guide   Signs - Freeways and   Expressways   Sect. 3.6 (PP3-P4)
	X		Do the results of the operational analysis result in a significant adverse impact to existing or future conditions?	Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X			Will the proposed change in access result in needed upgrades or improvements to the cross road for a significant distance away from the interchange? If so, have impacts to the local network been disclosed and fully evaluated?"	SR 222 would be upgraded as part of the Megasite development.   Sect. 2.4 (P2) and 3.6 (PP1P3)

## Concept 5 Review

X		Are the cross roads or adjacent surface level roads and intersections affected by the proposed access point analyzed to the extent (length) where impacts caused or affecting the new proposed access point are disclosed to the appropriate managing jurisdiction?	Sect. 3.6 (PP3-P3) and 4.1 (Local Agency Letters)
X		Are pedestrian and/or bicycle facilities included (as appropriate) and do these facilities provide for reasonable accommodation?	Sect. 3.6 (PP2-P2) and 3.6 (PP3-P4)
X		Does the proposed access secure sufficient Limits of Access adjacent to the Interchange ramps?	AASHTO's "A Policy on Design Standards Interstate System, 2005" Pg. 2; NCHRP Synthesis 332 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X		Does the proximity of the nearest crossroad intersections to the ramps contribute to safety or operational problems? Can they be mitigated??	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3)
	X	In addition to HCS, what analysis tools were employed and were they appropriate?	HCS only.
X		Has the proposal distinguished between nominal safety (i.e. adherence to design policies and standards) and substantive safety (actual and expected safety performance)?	Safety was considered throughout the study in the development of the concepts.   Fig. 3.1 and 3.2; App. B
X		Will any individual elements within the recommended alternative be degraded operationally as a result of this action? If yes, are reasons provided to accept them?	Acceptable LOS were obtained from the capacity analysis results.   Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		In evaluating whether the proposal has a "significant adverse impact" on safety, has the State Strategic Highway Safety Plan been used as a benchmark?	Safety was considered throughout the study in the development of the concepts.   Sect. 3.6 (PP3-P4); Fig. 3.1 and 3.2; App. B
X		Are the proposed interchange design configurations able to satisfactorily accommodate the design year traffic volumes?	Sect. 3.1 (Capacity Analysis Results) and 3.6 (PP3-P1); Tables 3.3-3.8
X		If the project is to be built in stages, has the traffic operational and safety analyses considered the interim stages of the proposal?	Project is being built in one stage.

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the proposed access connect to a public road?	Sect. 2.4 (P2), 3.5 (P1), 3.6 (PP3-P3), and 3.6 (PP4-P2); Fig. 3.1 and 3.2; App. B
X			Are all traffic movements for full interchange access provided?	Sect. 2.4 (P2), 3.5, and 3.6 (PP4-P1); Fig. 3.1 and 3.2; App. B
		X	If not, is the proposed access for special purposes such as transit vehicles, HOVs, and/or a park and ride lot?	Providing for a full interchange.
		X	If a partial interchange is proposed, is there sufficient justification for providing only a partial interchange?	AASHTO Greenbook 2004 Pg. 821-823   Providing for a full interchange.
		X	If a partial interchange is proposed; was a full interchange evaluated as an alternative and is there sufficient justification to eliminate or discard it?	Providing for a full interchange.

## Concept 5 Review

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
		X	Is sufficient ROW available (or being acquired) to provide a full interchange at a future date (staged construction)?	Providing for a full interchange.
		X	Are you comfortable with how the missing movements will be accommodated on the surface streets and adjacent interchanges?	Providing for a full interchange.
X			Does FHWA support the selection of design controls/criteria and desired operational goals?	Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.5 (P1), and 3.6 (PP4-P2); Tables 3.3-3.8
X			Does the proposed access meet or exceed current design standards for the Interstate System?	AASHTO’s Greenbook and A Policy on Design Standards Interstate System, 2005   Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
		X	If not, have anticipated design exceptions been identified and reviewed (at least conceptually)?	Concept meets current design standards
		X	If expected design exceptions could have significant operational impacts on the Interstate and/or Crossroad system, are mitigation measures described?	Concept meets current design standards
X			Will the length of access control along the crossroad provide for acceptable operations and safety? (100-300' is a minimum. Additional access control is strongly encouraged when needed for safety and operational enhancement)	AASHTO "A Policy on Design Standards Interstate System" 2005 Sect. 2.4 (P2), 3.5 (P4), and 3.6 (PP4-P2)
X			Does FHWA support selection of opening and design years?	Sect. 2.3 (Horizon Year and Time Periods Analyzed)
X			Has each movement of the proposal been "tested" for ease of operation?	AASHTO Greenbook 2004 Pg. 863   Sect. 2.4 (Concepts), 3.1 (Capacity Analysis Results), 3.6 (PP3-P1), and 3.6 (PP4P2); Table 3.7

Have all design criteria (including but not limited to the following) been adequately addressed?

X			a. Sight distance at ramp terminals (Don't overlook signal heads   obscured by structures.)	AASHTO Greenbook 2004   Pg. 841   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			b. Sufficient storage on ramp to prevent queues from spilling on to the   Interstate (based on current and/or future projected traffic demand)	Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			c. Vertical clearance	AASHTO "A Policy on   Design Standards Interstate   System" 2005   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			d. Pedestrian access through the interchange	AASHTO Greenbook 2004   Pg. 864
X				Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP2-P2) and   3.6 (PP3-P4)

## Concept 5 Review

Policy Point 4: "The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access for managed lanes (e.g., transit, HOVs, HOT lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			f. Length of tapers	AASHTO Greenbook 2004   Pg. 849   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			g. Spacing between ramps	Greenbook pg 843 \& Ex. 1068 and operational analysis Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			h. Lane continuity	AASHTO Greenbook 2004   Pg. 810   Sect. 2.4 (Concepts), 3.5   (P1), and 3.6 (PP4-P2)
X			i. Lane balance	AASHTO Greenbook 2004 Pg. 810 AASHTO Greenbook 2004 Pg. 807 Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)
X			j. Uniformity in interchange design and operational patterns (i.e. rightside ramps, exit design consistent w/adjacent interchanges)	Sect. 2.4 (Concepts), 3.5 (P1), and 3.6 (PP4-P2)

Policy Point 5: "The proposal considers and is consistent with local and regional land use and transportation plans. Prior to receiving final approval, all requests for new or revised access must be included in an adopted Metropolitan Transportation Plan, in the adopted Statewide or Metropolitan Transportation Improvement Program (STIP or TIP), and the Congestion Management Process within transportation management areas, as appropriate, and as specified in 23 CFR part 450 , and the transportation conformity requirements of 40 CFR parts 51 and 93. ."

Addressed   Adequately?			Question	Reference Location	
$\mathbf{Y}$	$\mathbf{N}$	N/A		Does the IJR discuss or include (as appropriate) other project(s), studies   or planned actions that may have an effect on the report analysis results?	Sect. 1.4 (4 Projects Listed)   and 3.6 (PP5-P1)
X			Does the project conform to the local planning, MPO or other related   plans?	Sect. 3.6 (PP5-P1)	
X				Does the report include an endorsement of land use plans by the   appropriate government entity before it is utilized for traffic generation   purposes?	Existing land use is rural   agriculture
X			Is the access request located within a Transportation Management   Areas? (TMAs are metropolitan areas of 200,000 or more in population)	http://hepgis.fhwa.dot.gov/he   pgis_v2/Urbanboundaries/M   ap.aspx   Sect. 3.6 (PP5-P2)	
X			Is the access request located within a non-attainment area for air quality?   (requests for access in a non-attainment or maintenance areas for air   quality must be a part of a conforming transportation plan)	Sect. 3.6 (PP5-P2)	
X		Is the project included in the TIP/STIP and LRTP?			
X		Is the access point covered as a part of an Interstate corridor study or   plan? (especially important for areas where the potential exists for   construction of future adjacent interchanges)	Sect. 3.6 (PP5-P2)		

Policy Point 6: "In corridors where the potential exists for future multiple interchange additions, a comprehensive corridor or network study must accompany all requests for new or revised access with recommendations that address all of the proposed and desired access changes within the context of a longer-range system or network plan (23 U.S.C. 109(d), 23 CFR 625.2(a), 655.603(d), and 771.111)."

Question
Reference Location

## Concept 5 Review

$\mathbf{Y}$	$\mathbf{N}$	$\mathbf{N} / \mathbf{A}$		
X			Is it possible that new interchange(s) not addressed in the IJR could be   added within an area of influence to the proposed access point? (If so,   could the proposal preclude or otherwise be affected by any future access   points?)	Sect. 3.6 (PP6-P1\&P2)
X		X	Does the IJR report include the traffic volumes generated by any future   additional interchanges within a vicinity of influence that are proposed?	No planned future   interchanges.
		Does the IJR report fail to include any other proposed interstate access   points within a vicinity of influence that are being proposed or are in the   current long range construction program?	Sect. 1.4 (1 Potential Project   Listed) and 3.6 (PP6-   P1\&P2)	

Policy Point 7: "When a new or revised access point is due to a new, expanded, or substantial change in current or planned future development or land use, requests must demonstrate appropriate coordination has occurred between the development and any proposed transportation system improvements (23 CFR 625.2(a) and 655.603(d)). The request must describe the commitments agreed upon to assure adequate collection and dispersion of the traffic resulting from the development with the adjoining local street network and Interstate access point (23 CFR 625.2(a) and 655.603(d))."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Does the access request adequately demonstrate that an appropriate effort of coordination has been made with appropriate proposed developments?	Sect. 2.3 (Megasite and Other Assumed Developments) and 3.6 (PP7-P1); Table 2.2
X			Are the proposed improvements compatible with the existing street network or are other improvements needed?	Sect. 2.4 (Concepts), 3.1, and 3.6 (PP3-P3); Fig. 3.1 and 3.2; App. B
X			Are there any pre-condition contingencies required in regards to the timing of other improvements?	Sect. 3.6 (PP7-P3)
X			Have all commitments to improve the local transportation network been included in a TIP/STIP/LRTP prior to the Interstate access approval (final approval of NEPA document)?	Sect. 1.4 (P1) and 3.6 (PP7P2)
		X	If pre-condition contingencies are required, are pertinent parties in agreement with these contingencies and is this documented?	No pre-conditions are required.
		X	If the proposed improvements are founded on the need for providing access to new development, are appropriate commitments in place to ensure that the development will likely occur as planned?	No commitments are required.
		X	If project is privately funded, are appropriate measures in place to ensure improvements will be completed if the developer is unable to meet financial obligations?	Project is not privately funded.
X			If the purpose and need to accommodate new development/traffic demands aren't fully known, is a worst case scenario used for future traffic?	Sect. 2.3 and 3.6 (PP7-P1);   Table 2.2
X			Does the project require financial or infrastructure commitments from other agencies, organizations, or private entities?	Sect. 3.6 (PP7-P3)

Policy Point 8: "The proposal can be expected to be included as an alternative in the required environmental evaluation, review and processing. The proposal should include supporting information and current status of the environmental
processing (23 CFR 771.111)."

Addressed Adequately?			Question	Reference Location
Y	N	N/A		
X			Are there any known social or environmental issues that could affect the proposal?	Sect. 2.2 (P1\&P2) and 3.6 (PP8-P2)
X			Is the project consistent with the current TIP/STIP and LRTP and/or proposed amendments to the plan?	Sect. 3.6 (PP5-P1)(PP8-P2)
X			Although NEPA is a separate action, is an environmental overview for the proposed improvements included?	Sect. 2.2 (P2) and 3.6 (PP8P2)

## Concept 5 Review

X			Is it appropriate to emphasize to the project stakeholders that the access   approval will be handled as a two-step process? (i.e. Step 1: Engineering   and Operational Acceptability and Step 2: Environmental Approvals)	Sect. 3.6 (PP8-P2)   X

Reference Location Legend: P\# = Paragraph Number; PP\# = Policy Point Number

### 4.0 SUMMARY AND CONCLUSIONS

As discussed in Section 3.5, this study determined that the following options are considered viable for this interchange location:

- Concept 1 - Partial Traditional Diamond located east of the existing interchange.
- Concept 5 - Combined Traditional/Tight Diamond located at the existing interchange.
- No-Build Alternative.

The No-Build Alternative was determined viable option if the Megasite is not developed. However, if the Megasite is developed, then the No-Build Alternative is a non-viable concept because the capacity of the existing interchange will not be satisfied (LOS F conditions) in the future 2034 design year.

Between the viable construction concepts, TDOT and ECD both prefer Concept 1 since the l-40 eastbound to S.R. 222 northbound traffic movement would be free-flow via a single lane loop ramp and removed from signalization as required with Concept 5 . This traffic movement is the highest turning movement within the interchange totaling 586 vehicles during the 2034 morning peak period. The construction cost for both of these concepts are similar with Concept 1 (\$13.1 million) being slightly less than Concept 5 ( $\$ 13.2$ million).

At this time, a tenant for the Megasite has not been identified. However, if a tenant is identified and the Megasite is developed, these proposed modifications will be needed to meet the passenger and freight transportation needs and to support the future logical pattern of development within the study area. Without the construction of one of these two (2) viable concepts, the existing level of service (LOS) at the I-40/S.R. 222 interchange will be LOS F which includes the development of the Megasite. The service life of the viable concepts along with the development of the Megasite will exceed the 2034 planning horizon.

### 4.1 TDOT Design Concurrence Letter and Local Agency Letters of Support

The TDOT Design concurrence letter and three (3) letters of local agency support are included on subsequent pages.


STATE OF TENNESSEE
DEPARTMENT OF TRANSPORTATION
NASHVILLE, TENNESSEE 37243-0340

## MEMORANDUM

TO: $\quad$ Steve Allen, Director, Project Planning Division
FROM: Carolyn Stonecipher, Director, Design Division
DATE: $\quad$ September 9, 2010
SUBJECT: Interchange Modification Study
Interstate 40 at State Route 222 (exit 42)
Fayette County

The subject Interchange Modification Study has been reviewed by my office and we concur with the conceptual plan as shown.

Please advise if this office can be of further assistance.

CAS:rdb

## HAYWOOD COUNTY

00000000000000000000000000000000000000
TELEPHONE (731) 772-1432


## OFFICE OF COUNTY MAYOR

## 0000000000000000000000000000000000000000000000000000000000

COURTHOUSE
1 NORTH WASHINGTON • BROWNSVILLE, TN 38012


STATEOFTENNESSEE DEPT. OFTRANSPORTATION RECEIVED

JUN 22009
May 19, 2009

Paul Leges, P.E.
Chief Engineer
Tennessee Department of Transportation
James K. Polk Building
505 Deaderick Street, Suite 700
Nashville, TN 37243-0349
Dear Mr. Degges:
The purpose of this letter is to support efforts by the Tennessee Department of Transportation to get operational approvals for proposed interchange studies along Interstate 40 in Haywood and Fayette Counties. We appreciate the opportunity to express our preferences on your conceptual drawings of the interchanges and commend your staff for their hard work.

As you know, the interchange at Exit 42 is currently insufficient to serve the I-40 Advantage Auto Park in Haywood County, assuming that a large project decides to locate on this TVA-certified megasite. Improvements to the existing interchange at SR 222, as shown on Concept 1, will add that capability and we respectfully ask you to submit an Interchange Modification Study to the Federal Highway Administration (FHWA).

Furthermore, a new I-40 interchange will be necessary if the megasite develops as expected. Another interchange at about mile marker 44, as shown on Concept 4, would provide additional interstate highway access to an assembly plant and adjoining supplier park. Again, we ask you to submit an Interchange Justification Study to FHWA in conjunction with the aforementioned Modification Study of Exit 42.

Having these interchange studies approved would make the megasite even more attractive to industrial prospects and ye appreciate your willingness) to seek the operational approvals mentioned above.


# Tome of Wanton 

8 MAIN STREET<br>PRO. BOX 97<br>STANTON, TENNESSEE 38069<br>731-548-2565

May 19, 2009
Paul Leges, P.E.
Chief Engineer
Tennessee Department of Transportation
James K. Polk Building
505 Deaderick Street, Suite 700
Nashville, TN 37243-0349
Dear Mr. Degges:
The purpose of this letter is to support efforts by the Tennessee Department of Transportation to get operational approvals for proposed interchange studies along Interstate 40 in Haywood and Fayette Counties. We appreciate the opportunity to express our preferences on your conceptual drawings of the interchanges and commend your staff for their hard work.

As you know, the interchange at Exit 42 is currently insufficient to serve the I-40 Advantage Auto Park in Haywood County, assuming that a large project decides to locate on this TVA-certified megasite. Improvements to the existing interchange at SR 222, as shown on Concept 1 , will add that capability and we respectfully ask you to submit an Interchange Modification Study to the Federal Highway Administration (FHWA).

Furthermore, a new I-40 interchange will be necessary if the megasite develops as expected. Another interchange at about mile marker 44, as shown on Concept 4, would provide additional interstate highway access to an assembly plant and adjoining supplier park. Again, we ask you to submit an Interchange Justification Study to FHWA in conjunction with the aforementioned Modification Study of Exit 42.

Having these interchange studies approved would make the megasite even more attractive to industrial prospects and we appreciate your willingness to seek the operational approvals mentioned above.

Respectfully,


Mayor of Stanton


```
JUN 2 2009
```

ChiEF ENGINEER

## 111 North Washington

P.O. Box 375

Brownsville, TN 38012
(731)772-1212

May 26, 2009
Paul Leges, P.E.
Chief Engineer
Tennessee Department of Transportation James K. Polk Building
505 Deaderick Street, Suite 700
Nashville, TN 37243-0349
Dear Mr. Degges:

The purpose of this letter is to support efforts by the Tennessee Department of Transportation to get operational approvals for proposed interchange studies along Interstate 40 in Haywood and Fayette Counties. We appreciate the opportunity to express our preferences on your conceptual drawings of the interchanges and commend your staff for their hard work.

As you know, the interchange at Exit $\mathbf{4 2}$ is currently insufficient to serve the I-40 Advantage Auto Park in Haywood County, assuming that a large project decides to locate on the TVA-certified mega site. Improvements to the existing interchange at SR 222, as shown on Concept 1 , will add that capability and we respectfully ask you to submit an Interchange Modification Study to the Federal Highway Administration (FHWA).

Furthermore, a new I-40 interchange will be necessary if the mega site develops as expected. Another interchange at about mile marker 44, as shown on Concept 4, would provide additional interstate highway access to an assembly plant and adjoining supplier park. Again, we ask you to submit an Interchange Justification Study to FHWA in conjunction with the aforementioned Modification Study of Exit 42.

Having these interchange studies approved would make the mega site even more attractive to industrial prospects and we appreciate your willingness to seek the operational approvals mentioned above.

Respectfully,

## MuNG 7/3 nne

Webb F. Banks, Mayor

## APPENDIX A

## TRAFFIC DATA

## TDOT TRAFFIC VOLUME

 APPROVAL LETTER

STATE OF TENNESSEE
DEPARTMENT OF TRANSPORTATION PROJECT PLANNING DIVISION SUITE 1000, JAMES K. POLK BUILDING

505 Deaderick Street
NASHVILLE, TENNESSEE 37243-0344

John Schroer	Bill Haslam   Governor

April 14, 2011

Mr. Steve Bryan
TranSystems
5500 Franklin Pike Suite 202
Nashville, TN 37220

Subject: Updated Traffic Volume Projections for I-40 between Exit 35 and Exit 47
Fayette and Haywood Counties
Dear Mr. Bryan,
We have checked and reviewed the traffic forecasts you submitted on April 5, 2011 for the subject project. All traffic volumes and DHVs have our approval. If you have any questions, please contact me at (615) 741-5786 or via email at gregory.dyer@tn.gov.

Sincerely,


Greg Dyer
Roadway Specialist 2

CC : Mr. Tony Armstrong

2014 AND 2034
TRAFFIC DIAGRAMS


$$
2014 \text { PM DHV - } 000
$$

2014 AM DHV - 000
TD $\uparrow$ T
FAYETTE COUNTY
I-40 AT SR 59 (EXIT 35)
2014 DESIGN HOUR VOLUMES


2014 PM DHV - 000
2014 AM DHV - 000
$\mathrm{TD} \uparrow \mathrm{T}$
FAYETTE COUNTY
I-40 AT SR 222 (EXIT 42)
2014 DESIGN HOUR VOLUMES


> 2014 PM DHV - 000
> 2014 AM DHV - 000



> 2034 PM DHV - 000
> 2034 AM DHV - 000

TD $\uparrow$ T
FAYETTE COUNTY
I-40 AT SR 59 (EXIT 35)
2034 DESIGN HOUR VOLUMES



$$
\begin{aligned}
& 2034 \text { PM DHV - } 000 \\
& 2034 \text { AM DHV - } 000
\end{aligned}
$$




> 2014 AADT - 000
> 2034 AADT - 000
> AADT TRUCK \% - 0


> 2014 AADT - 000
> 2034 AADT - 000
> AADT TRUCK \% - 0

2014 AADT - 000
2034 AADT - 000
AADT TRUCK $\%-0$


> 2014 AADT - 000
> 2034 AADT - 000
> AADT TRUCK \% - 0

MEGASITE AND OTHER DEVELOPMENTS TRIP DISTRIBUTION PERCENTAGES

AM/PM PEAK HOUR AND DAILY TRIPS



TD $\uparrow$ T


TD(4)

## SUPPORT DATA




Comanfy:	10yute	Slatimi Vumber: 01			
Rowet:	SR-30	Station yrue:	Oher Rural	Shtum Opat	NO
Ancalom:	NHAB	TY 1.1 NE			


Month	Year	Average   Wechlay   lirame	Average   Detily   Trames	量noud   Averase   Manty	Ane   Adjustmen Factor	Remarks
05	1985	1,765	1.708	1.690	0.99	
45	1986	1,741	1,828	1.810	0.99	
03	1987	1,330		1.651	0.99	
05	1988	2.489		2.122	10.99	
05	1989	2183		2.142	1.99	
44	1990	2,195		3.095	0.99	
44	1991	1.988	1.99	1.977	0,99	
05	1903	2.079	2,017	2.017	0.99	
04	1998	2.169	2,126	2104	0.99	
14	1904	$3280$	$2,185$	2.164	0.99	.
06	1995	2.173	4,933	1.913	0.99	
05	1996	2216	$2.1 \times 5$	2.163	029	
65	1993	2.446	2.299	2, 276	D.94	
05	1998	2.183	2079	2058	144	
05	1999	$2,620$	$2.279$	$2,236$	0.99	
06	2004	3, 157	2404	2875	0.99	
04	2001	237	2,21	2209	0.99	
02	3012	$2,360$	$2,252$	$2320$	$0.99$	
04	2103	2,599	2,509	2,482	0.99	
66	304	0	11	2441	0.99	Cst
03	2015	2,865	28.37	2,805	0.99	
03	2046	3,2,4	3202	3,170	0.99	
12	2017	$2.122$	$2.807$	$2794$	$0.99$	
06	21008	2,679	2,599	2,573	0.99	
04	2109	2,666	2.350	23511	0.94	USTDCLASSCOUNT
06	2010	2911	2765	2.738	19.99	LASTTNOYEARS catMTle



Trend Gre based on yew 198s-2011

Comaty	Iv:athe		Strieor Number:		000111		No	
Noute:			Stallon Types	Other la		Station ©ut		
Lection:	SE Of $1-40$					$\text { f } / 10$		
		Averace	Average	Ablugal	Axte			
		Wethday	Daty	Average	Aljusment			
Mant	Yenr	Trafte	Traftic	Dally	Fractor	Remarts		
(16)	2000	1,980	1,921	1,912	0.99	SCIHOM OUT		
0.	2001	3,301	3169	3,137	009			
0	2012	11	0	4.372	099	1st		
114	2003	3.031	2989	2,960	0.99	```AMOTLESSTHAN EXPLCTEO YALUL BASED ONPEEVIOUS VRARS OATA```		
1010	2004	3.211	3.101	3076	0.99			
03	2005	2,724	2,95	2.725	0.99			
04	2006	3,315	3.168	3.137	099	OK- ste 204		
02	2007	2,344	2,839	2844	0.92			
08	2008	2704	2,619	2.593	0.99			
05	2009	3,445	2897	2864	0,99			
06	2010	2,865	2,72	3,699	0.99			




$\square$	0.02
-	${ }_{\text {gooz }}^{\text {goiz }}$
-	[002 \%
\%	
4	p00\%
	${ }_{2002}^{6002}$
.	1008 \%
$\square$	6661
	${ }_{2651}^{8651}$
	${ }_{9651} 26$
	${ }^{95651}$
	${ }^{6} 661$ E
	${ }_{1651}^{2651}$
	0681
$\cdots$	
	2865
	s861


Locatom: NEAR FAYETTE COLINE

Axle

Month	Year	Average   Weelday   Trathic	Average   Daily   Trafle	Anmal   Average   Dally	Axle   Adfustment   Factor
05	1985	652	632	613	0.97
06	1986	642	642	623	0.97
04	1987	753		767	0.97
06	1988	808		722	0.97
06	1989	778		755	0.97
05	1990	853		819	0.97
05	1991	1,088	1,077	1,045	0.97
05	1992	956	937	909	0.97
05	1993	1,016	986	956	0.97
06	1994	834	809	785	0.97
06	1995	872	828	803	0.97
06	1996	945	898	871	0.97
05	1997	996	867	841	0.97
05	1998	1,052	989	959	0.97
06	1999	1,005	975	946	0.97
05	2000	935	879	853	0.97
05	2001	1,028	966	937	0.97
03	2002	957	986	956	0.97
06	2003	956	927	899	0.97
06	2004	0	0	964	0.97
06	2005	1,044	1,002	972	0.97
06	2006	1,037	985	956	0.97
05	2007	1,000	940	912	0.97
07	2008	942	914	886	0.97
05	2009	1,082	952	924	0.97
06	2010	0	0	890	0.89




-320- aveage daly traffc volu
(40) interstate higway srstem U0- 70 . NUMBERED HISHWAY SSSTEM 10- STAEE SECONOREY HIGHWAY SYTIEM 20- STATE PRMMARY HICGWaY SM

-     -         - Countr line
- =- state une
------- incobpooated ctry boundary
$\bar{\infty}$ WIDE STREAM


2009 TRAFFIC MAP
tennessee department of transportation TENNESSEE DEPARTMENT OF TRANSPORTATION
LONG RANGE AND PROJECT PLANNING DIVIIONS U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMIISTRATON



County:	Haywood	Station Number: 000001		
Route:	I-40	Station Type:	Interstate, Rural	Station Out:


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
07	2008	498	483	473	0.98	
05	2009	512	517	507	0.98	
06	2010	605	587	575	0.98	



County:	Haywood	Station Number: 000002		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-179			


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
07	2008	391	379	372	0.98	
05	2009	432	436	428	0.98	
06	2010	495	480	471	0.98	



County:	Haywood	Station Number: 000003		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO

Location: SR-179

Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
07	2008	487	472	463	0.98	
05	2009	447	451	442	0.98	
06	2010	503	423	414	0.98	



County:	Haywood	Station Number: 000004		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-179			


Month	Year	Average   Weekday Traffic	Average   Daily   Traffic	Annual   Average Daily	Axle Adjustment Factor	Remarks
07	2008	560	543	532	0.98	
05	2009	475	480	470	0.98	
06	2010	582	565	553	0.98	
		600				
		500				
		400				
		300				
		200				
		100				
			Line b	years 2008	$2010$	



County:	Fayette	Station Number: 000005		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-222			


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
09	2008	2,694	2,478	2,429	0.98	
05	2009	2,922	2,805	2,749	0.98	
06	2010	3,464	3,152	3,089	0.98	



County:	Fayette	Station Number: 000006		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-222			


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
09	2008	2,496	2,296	2,250	0.98	
05	2009	2,419	2,322	2,276	0.98	
06	2010	3,252	2,959	2,900	0.98	



County:	Fayette	Station Number: 000007		
Route:	I-40	Station Type:	Interstate, Rural	Station Out:


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
08	2008	1,630	1,614	1,581	0.98	
05	2009	1,551	1,489	1,459	0.98	
06	2010	1,831	1,666	1,633	0.98	



County:	Fayette	Station Number: 000008		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-222			


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
09	2008	1,852	1,704	1,670	0.98	
05	2009	1,762	1,692	1,658	0.98	
06	2010	1,991	1,812	1,776	0.98	




County:	Fayette	Station Number: 000001		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-59			


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
09	2008	2,421	2,227	2,183	0.98	
05	2009	2,302	2,210	2,166	0.98	
06	2010	2,316	1,945	1,907	0.98	



County:	Fayette	Station Number: 000002		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-59			


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
09	2008	1,100	1,012	992	0.98	
05	2009	972	933	914	0.98	
06	2010	1,218	1,108	1,086	0.98	



County:	Fayette	Station Number: 000003	
Route:	I-40	Station Type:	Interstate, Rural



County:	Fayette	Station Number: 000004		
Route:	I-40	Station Type:	Interstate, Rural	Station Out: NO
Location:	SR-59			


Month	Year	Average   Weekday   Traffic	Average   Daily   Traffic	Annual   Average   Daily	Axle   Adjustment   Factor	Remarks
09	2008	2,101	1,933	1,894	0.98	
05	2009	2,067	1,984	1,945	0.98	
06	2010	1,994	1,815	1,778	0.98	



# Interstate Traffic Counts - 2007 



Page 5 of 32

File Name : am peak_northern terminal_CB1
Site Code : Exit 42
Start Date: 8/27/2008
Page No : 1

Groups Printed- Autos - Trucks

	SR 222   From North				I-40 WB Off-Ramp From East				SR 222   From South				I-40 WB On-Ramp From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
06:00 AM	3	3	0	6	0	0	8	8	0	3	13	16	0	0	0	0	30
06:15 AM	10	4	0	14	0	1	11	12	0	5	10	15	0	0	0	0	41
06:30 AM	5	8	0	13	0	0	11	11	0	1	15	16	0	0	0	0	40
06:45 AM	9	10	0	19	0	0	11	11	0	2	11	13	0	0	0	0	43
Total	27	25	0	52	0	1	41	42	0	11	49	60	0	0	0	0	154


07:00 AM	10	2	0	12	0	0	8	8	0	6	8	14	0	0	0	0	34
07:15 AM	2	6	0	8	1	0	7	8	0	7	14	21	0	0	0	0	37
07:30 AM	4	8	0	12	0	0	16	16	0	1	11	12	0	0	0	0	40
07:45 AM	4	10	0	14	1	0	8	9	0	7	11	18	0	0	0	0	41
Total	20	26	0	46	2	0	39	41	0	21	44	65	0	0	0	0	152


| 08:00 AM | 2 | 3 | 0 | 5 | 0 | 0 | 6 | 6 | 0 | 3 | 14 | 17 | 0 | 0 | 0 | 0 | 28 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $08: 15 \mathrm{AM}$ | 3 | 2 | 0 | 5 | 0 | 0 | 4 | 4 | 0 | 2 | 7 | 9 | 0 | 0 | 0 | 0 | 18 |
| $08: 30 \mathrm{AM}$ | 1 | 4 | 0 | 5 | 0 | 0 | 5 | 5 | 0 | 5 | 8 | 13 | 0 | 0 | 0 | 0 | 23 |
| $08: 45 \mathrm{AM}$ | 3 | 4 | 0 | 7 | 0 | 0 | 12 | 12 | 0 | 3 | 8 | 11 | 0 | 0 | 0 | 0 | 30 |
| Total | 9 | 13 | 0 | 22 | 0 | 0 | 27 | 27 | 0 | 13 | 37 | 50 | 0 | 0 | 0 | 0 | 99 |


Grand Total	56	64	0	120	2	1	107	110	0	45	130	175	0	0	0	0	405
Apprch \%	46.7	53.3	0		1.8	0.9	97.3		0	25.7	74.3		0	0	0		
Total \%	13.8	15.8	0	29.6	0.5	0.2	26.4	27.2	0	11.1	32.1	43.2	0	0	0	0	
Autos	55	61	0	116	2	1	52	55	0	40	63	103	0	0	0	0	274
\% Autos	98.2	95.3	0	96.7	100	100	48.6	50	0	88.9	48.5	58.9	0	0	0	0	67.7
Trucks	1	3	0	4	0	0	55	55	0	5	67	72	0	0	0	0	131
\% Trucks	1.8	4.7	0	3.3	0	0	51.4	50	0	11.1	51.5	41.1	0	0	0	0	32.3

File Name : am peak_northern terminal_CB1
Site Code : Exit 42
Start Date: 8/27/2008
Page No : 2


Start Date: 8/27/2008
Page No : 3

	SR 222   From North				I-40 WB Off-Ramp From East				SR 222   From South				I-40 WB On-Ramp From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 06:15 AM																	
06:15 AM	10	4	0	14	0	1	11	12	0	5	10	15	0	0	0	0	41
06:30 AM	5	8	0	13	0	0	11	11	0	1	15	16	0	0	0	0	40
06:45 AM	9	10	0	19	0	0	11	11	0	2	11	13	0	0	0	0	43
07:00 AM	10	2	0	12	0	0	8	8	0	6	8	14	0	0	0	0	34
Total Volume	34	24	0	58	0	1	41	42	0	14	44	58	0	0	0	0	158
\% App. Total	58.6	41.4	0		0	2.4	97.6		0	24.1	75.9		0	0	0		
PHF	. 850	. 600	. 000	. 763	. 000	. 250	. 932	. 875	. 000	. 583	. 733	. 906	. 000	. 000	. 000	. 000	. 919


	Peak Hour Data   Peak Hour Begins at 06:15 AM   Autos   Trucks	

File Name : am peak_southern terminal_cb2 Site Code : Exit 42
Start Date : 8/27/2008
Page No : 1

Groups Printed- Autos - Trucks

	SR 222   From North					I-40 EB On-Ramp From East					SR 222   From South					I-40 EB Off-Ramp From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00 AM	0	11	0	0	11	0	0	0	0	0	7	17	0	0	24	4	0	2	0	6	41
06:15 AM	0	13	0	0	13	0	0	0	0	0	7	12	0	0	19	8	0	0	0	8	40
06:30 AM	0	16	1	0	17	0	0	0	0	0	13	15	0	0	28	13	0	1	0	14	59
06:45 AM	0	21	0	0	21	0	0	0	0	0	12	14	0	0	26	11	1	0	0	12	59
Total	0	61	1	0	62	0	0	0	0	0	39	58	0	0	97	36	1	3	0	40	199


07:00 AM	0	12	0	0	12	0	0	0	0	0	10	16	0	0	26	9	0	1	0	10	48
07:15 AM	0	11	1	0	12	0	0	0	0	0	26	16	0	0	42	16	0	2	0	18	72
07:30 AM	0	21	1	0	22	0	0	0	0	0	12	13	0	0	25	13	0	2	0	15	62
07:45 AM	0	22	0	0	22	0	0	0	0	0	16	12	0	0	28	16	0	2	0	18	68
Total	0	66	2	0	68	0	0	0	0	0	64	57	0	0	121	54	0	7	0	61	250


08:00 AM	0	12	0	0	12	0	0	0	0	0	15	17	0	0	32	12	0	1	0	13	57
08:15 AM	0	9	0	0	9	0	0	0	0	0	13	10	0	0	23	6	2	1	0	9	41
08:30 AM	0	9	1	0	10	0	0	0	0	0	15	14	0	0	29	15	0	0	0	15	54
08:45 AM	0	10	0	0	10	0	0	0	0	0	14	11	0	0	25	17	0	0	0	17	52
Total	0	40	1	0	41	0	0	0	0	0	57	52	0	0	109	50	2	2	0	54	204


Grand Total	0	167	4	0	171	0	0	0	0	0	160	167	0	0	327	140	3	12	0	155	653
Apprch \%	0	97.7	2.3	0		0	0	0	0		48.9	51.1	0	0		90.3	1.9	7.7	0		
Total \%	0	25.6	0.6	0	26.2	0	0	0	0	0	24.5	25.6	0	0	50.1	21.4	0.5	1.8	0	23.7	
Autos	0	111	4	0	115	0	0	0	0	0	61	93	0	0	154	58	1	11	0	70	339
\% Autos	0	66.5	100	0	67.3	0	0	0	0	0	38.1	55.7	0	0	47.1	41.4	33.3	91.7	0	45.2	51.9
Trucks	0	56	0	0	56	0	0	0	0	0	99	74	0	0	173	82	2	1	0	85	314
\% Trucks	0	33.5	0	0	32.7	0	0	0	0	0	61.9	44.3	0	0	52.9	58.6	66.7	8.3	0	54.8	48.1

File Name : am peak_southern terminal_cb2
Site Code : Exit 42
Start Date : 8/27/2008
Page No : 2


File Name : am peak_southern terminal_cb2
Site Code : Exit 42
Start Date : 8/27/2008
Page No : 3

	SR 222   From North					I-40 EB On-Ramp   From East					SR 222   From South					I-40 EB Off-Ramp From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Toal	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Toal	t. T

Peak Hour Analysis From 06:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 07:15 AM

07:15 AM	0	11	1	0	12	0	0	0	0	0	26	16	0	0	42	16	0	2	0	18	72
07:30 AM	0	21	1	0	22	0	0	0	0	0	12	13	0	0	25	13	0	2	0	15	62
07:45 AM	0	22	0	0	22	0	0	0	0	0	16	12	0	0	28	16	0	2	0	18	68
08:00 AM	0	12	0	0	12	0	0	0	0	0	15	17	0	0	32	12	0	1	0	13	57
Total Volume	0	66	2	0	68	0	0	0	0	0	69	58	0	0	127	57	0	7	0	64	259
\% App. Total	0	97.1	2.9	0		0	0	0	0		54.3	45.7	0	0		89.1	0	10.9	0		
PHF	. 000	. 750	. 500	. 000	. 773	. 000	. 000	. 000	. 000	. 000	. 663	. 853	. 000	. 000	. 756	. 891	. 000	. 875	. 000	. 889	. 899



Groups Printed- Autos - Trucks

	$\begin{gathered} \text { SR } 222 \\ \text { From North } \end{gathered}$					I-40 WB Off-Ramp From East					$\begin{gathered} \text { SR } 222 \\ \text { From South } \end{gathered}$					I-40 WB On-Ramp From West					
Start Time	Right	Thru	Left	Peds	App. Toaal	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:15 PM	5	6	0	0	11	1	1	15	0	17	0	11	8	0	19	0	0	0	0	0	47
04:30 PM	0	8	0	0	8	2	0	14	0	16	0	12	11	0	23	0	0	0	0	0	47
04:45 PM	2	9	0	0	11	0	1	11	0	12	0	16	14	0	30	0	0	0	0	0	53
Total	7	23	0	0	30	3	2	40	0	45	0	39	33	0	72	0	0	0	0	0	147
05:00 PM	2	4	0	0	6	2	0	14	0	16	0	8	8	0	16	0	0	0	0	0	38
05:15 PM	1	7	0	0	8	0	0	11	0	11	0	11	14	0	25	0	0	0	0	0	44
05:30 PM	1	5	0	0	6	0	0	15	0	15	0	10	9	0	19	0	0	0	0	0	40
05:45 PM	3	4	0	0	7	0	0	19	0	19	0	5	13	0	18	0	0	0	0	0	44
Total	7	20	0	0	27	2	0	59	0	61	0	34	44	0	78	0	0	0	0	0	166


06:00 PM	0	6	0	0	6	0	0	10	0	10	0	9	14	0	23	0	0	0	0	0	39
Grand Total	14	49	0	0	63	5	2	109	0	116	0	82	91	0	173	0	0	0	0	0	352
Apprch \%	22.2	77.8	0	0		4.3	1.7	94	0		0	47.4	52.6	0		0	0	0	0		
Total \%	4	13.9	0	0	17.9	1.4	0.6	31	0	33	0	23.3	25.9	0	49.1	0	0	0	0	0	
Autos	14	47	0	0	61	5	1	43	0	49	0	80	38	0	118	0	0	0	0	0	228
\% Autos	100	95.9	0	0	96.8	100	50	39.4	0	42.2	0	97.6	41.8	0	68.2	0	0	0	0	0	64.8
Trucks	0	2	0	0	2	0	1	66	0	67	0	2	53	0	55	0	0	0	0	0	124
\% Trucks	0	4.1	0	0	3.2	0	50	60.6	0	57.8	0	2.4	58.2	0	31.8	0	0	0	0	0	35.2


	SR 222 From North					I-40 WB Off-Ramp From East					$\begin{gathered} \text { SR } 222 \\ \text { From South } \end{gathered}$					I-40 WB On-Ramp From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Toaal	Int. Total

Peak Hour Analysis From 04:15 PM to 06:00 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 04:15 PM

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 04:15 PM | $\mathbf{5}$ | 6 | 0 | 0 | $\mathbf{1 1}$ | 1 | $\mathbf{1}$ | $\mathbf{1 5}$ | 0 | $\mathbf{1 7}$ | 0 | 11 | 8 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 47 |
| 04:30 PM | 0 | 8 | 0 | 0 | 8 | $\mathbf{2}$ | 0 | 14 | 0 | 16 | 0 | 12 | 11 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 47 |
| 04:45 PM | 2 | $\mathbf{9}$ | 0 | 0 | 11 | 0 | 1 | 11 | 0 | 12 | 0 | $\mathbf{1 6}$ | $\mathbf{1 4}$ | 0 | $\mathbf{3 0}$ | 0 | 0 | 0 | 0 | 0 | 53 |
| 05:00 PM | 2 | 4 | 0 | 0 | 6 | 2 | 0 | 14 | 0 | 16 | 0 | 8 | 8 | 0 | 16 | 0 | 0 | 0 | 0 | 0 | 38 |
| Total Volume | 9 | 27 | 0 | 0 | 36 | 5 | 2 | 54 | 0 | 61 | 0 | 47 | 41 | 0 | 88 | 0 | 0 | 0 | 0 | 0 | 185 |
| \% App. Total | 25 | 75 | 0 | 0 |  | 8.2 | 3.3 | 88.5 | 0 |  | 0 | 53.4 | 46.6 | 0 |  | 0 | 0 | 0 | 0 |  |  |
| PHF | .450 | .750 | .000 | .000 | .818 | .625 | .500 | .900 | .000 | .897 | .000 | .734 | .732 | .000 | .733 | .000 | .000 | .000 | .000 | .000 | .873 |



File Name : pm peak_southern terminal_cb1
Site Code : 00000000
Start Date : 8/26/2008
Page No : 1

Groups Printed- Autos - Trucks

	$\begin{gathered} \text { SR } 222 \\ \text { From North } \end{gathered}$				I-40 EB On-Ramp From East				SR 222   From South				I-40 EB Off-Ramp From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:15 PM	0	18	0	18	0	0	0	0	20	14	0	34	21	0	4	25	77
04:30 PM	0	21	2	23	0	0	0	0	22	19	1	42	14	0	5	19	84
04:45 PM	0	16	3	19	0	0	0	0	13	25	0	38	9	0	4	13	70
Total	0	55	5	60	0	0	0	0	55	58	1	114	44	0	13	57	231


05:00 PM	0	18	1	19	0	0	0	0	15	15	0	30	23	0	2	25	74
05:15 PM	0	16	1	17	0	0	0	0	14	24	0	38	19	0	1	20	75
05:30 PM	0	21	0	21	0	0	0	0	19	16	0	35	24	0	2	26	82
05:45 PM	0	24	0	24	0	0	0	0	14	16	0	30	17	1	2	20	74
Total	0	79	2	81	0	0	0	0	62	71	0	133	83	1	7	91	305


$06: 00$ PM	0	14	0	14	0	0	0	0	23	22	0	45	18	0	2	20	79
Grand Total	0	148	7	155	0	0	0	0	140	151	1	292	145	1	22	168	615
Apprch \%	0	95.5	4.5		0	0	0		47.9	51.7	0.3		86.3	0.6	13.1		
Total \%	0	24.1	1.1	25.2	0	0	0	0	22.8	24.6	0.2	47.5	23.6	0.2	3.6	27.3	1
Autos	0	82	6	88	0	0	0	0	73	95	0	168	76	92	355		
\% Autos	0	55.4	85.7	56.8	0	0	0	0	52.1	62.9	0	57.5	52.4	100	100	58.9	57.7
Trucks	0	66	1	67	0	0	0	0	67	56	1	124	69	0	0	69	260
\% Trucks	0	44.6	14.3	43.2	0	0	0	0	47.9	37.1	100	42.5	47.6	0	0	41.1	42.3



File Name : pm peak_southern terminal_cb1
Site Code : 00000000
Start Date : 8/26/2008
Page No : 2

	SR 222   From North				I-40 EB On-Ramp From East				SR 222   From South				I-40 EB Off-Ramp From West				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 04:15 PM to 06:00 PM - Peak 1 of 1																	
Peak Hour for Entire Intersection Begins at 05:15 PM																	
05:15 PM	0	16	1	17	0	0	0	0	14	24	0	38	19	0	1	20	75
05:30 PM	0	21	0	21	0	0	0	0	19	16	0	35	24	0	2	26	82
05:45 PM	0	24	0	24	0	0	0	0	14	16	0	30	17	1	2	20	74
06:00 PM	0	14	0	14	0	0	0	0	23	22	0	45	18	0	2	20	79
Total Volume	0	75	1	76	0	0	0	0	70	78	0	148	78	1	7	86	310
\% App. Total	0	98.7	1.3		0	0	0		47.3	52.7	0		90.7	1.2	8.1		
PHF	. 000	. 781	. 250	. 792	. 000	. 000	. 000	. 000	. 761	. 813	. 000	. 822	. 813	. 250	. 875	. 827	. 945



## APPENDIX B

## CONCEPT FIGURES










## APPENDIX C

## COST ESTIMATE WORKSHEETS

ITEM COST

Clear \& Grubbing:		\$53,320	=	\$53,000	\$53,000
Earthwork:		\$1,440,775	$=$	\$1,441,000	\$1,494,000
Pavement Removal:		\$43,476	=	\$43,000	\$1,537,000
Erosion Control:		\$317,000	=	\$317,000	\$1,854,000
Drainage:		\$41,531	=	\$42,000	\$1,896,000
Structures:		\$4,849,920	=	\$4,850,000	\$6,746,000
Railroad:		\$0	=	\$0	\$6,746,000
Paving:		\$1,327,006	=	\$1,327,000	\$8,073,000
Retaining Walls:		\$0	=	\$0	\$8,073,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$8,323,000
Topsoil:		\$198,955	=	\$199,000	\$8,522,000
Seeding:		\$52,226	=	\$52,000	\$8,574,000
Sodding:		\$25,000	=	\$25,000	\$8,599,000
Signing:		\$260,000	=	\$260,000	\$8,859,000
Signalization:		\$150,000	=	\$150,000	\$9,009,000
Fencing:		\$76,347	=	\$76,000	\$9,085,000
Guardrail:		\$80,500	=	\$81,000	\$9,166,000
Rip-Rap:		\$25,000	=	\$25,000	\$9,191,000
Other Construction:		\$431,614	=	\$432,000	\$9,623,000
Sub-Total:		\$9,622,669	=	\$9,623,000	\$9,623,000
10\% Eng. \& Cont.:		\$962,267	=	\$962,000	\$962,000
Sub-Total:		\$10,584,936	=	\$10,585,000	\$10,585,000
Total Construction Cost :	$\begin{aligned} & \text { Sub-Total } \\ & \$ 10,585,000 \end{aligned}$	$+$	$\begin{aligned} & \text { Mobil. } \\ & \$ 450,000 \end{aligned}$	=	\$11,035,000
	\$11,035,000	10\% Prel. Eng.			\$11,997,000
	$\begin{aligned} & \text { Row Total } \\ & \$ 355,000 \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	Utility Total \$700,000	$+$	Constr. Total \$11,997,000
TOTAL SECTION COST :					\$13,052,000
Mobilization Table					
\$0 to \$1,000,000	5\%				\$
\$1,000,000 to \$5,000,000	\$50,000 + 4.5\% over \$1,000,000				\$
\$5,000,000 to \$10,000,000	\$230,000 + 4\% over \$5,000,000				\$
\$10,000,000 to \$20,000,000	\$430,000 + 3.5\% over \$10,000,000				\$ 450,000
\$20,000,000 +	\$780,000 + 3\% over \$20,000,000				\$ -

Fayette County
Concept 1

Right of Way Cost										
Parcel	Area (sf)	Acres	(\$/Acre)*1.2 factor	Improvements (1.2 factor)		Land Cost		Total		
	21,730	0.499	\$ 13,000.00		\$	6,485.08			North of 1-40	
	1,469	0.034	\$ 13,000.00		\$	438.41			North of 1-40	
	121,619	2.792	\$ 13,000.00		\$	36,295.84			North of 1-40	
	10,637	0.244	\$ 13,000.00		\$	3,174.49			North of 1-40	
	170,567	3.916	\$ 13,000.00		\$	50,903.83			South of 1-40	
	509,906	11.706	\$ 13,000.00			152,175.80			South of 1-40	
	138,345	3.176	\$ 13,000.00		\$	41,287.53			South of 1-40	
	7,010	0.161	\$ 13,000.00		\$	2,092.06			South of 1-40	
	127,460	2.926	\$ 13,000.00		\$	38,039.03			Possible Wastew	atment Area
				\$	\$	323,968.60	\$	331,000		
Cost of Bldgs.		25.453					\$			
Contengenices						=	\$			
Total Land \& Improvement Costs						=	\$	331,000	(Rounded)	
Incidentals	8	x	\$ 3,000		Per Tract for Incid	$=$	\$	24,000		
Replacement Housin		x	\$ 12,000	Per Unit		=	\$	.		
Moving Expenses	$\times$	x	\$ 25,000			=	\$	-		
total row costs						=	\$	355,000		
201-07.05 Removal and Disposal of Brush and Trees (Clear. and Grub.)										
Length (ft.)	Width (tt.)(Avg.)	Area (sq.ft./ac.)	Acres	Cost (\$/ac.)						
6500	120	78,000	1.791				\$	4,477	Ramp NE Quad	
	0	034,500	0.0000.792	$\begin{aligned} & \$ 2,500 \\ & \$ 2,500 \end{aligned}$			\$		Ramp NW Quad	
230	150						s	1,980	Ramp sw Quad	
1180	115	34,500 135,700	0.792 3.115	\$2,500			\$	7,788	Ramp SE Quad	
1050	200	210,000	4.821	\$2,500				12,052	Loop Ramp	
1225	130	159,250	3.656	\$2,500			\$	9,140	Conn. To SR 222	South
1265315	200	$\begin{gathered} 253,000 \\ 58590 \end{gathered}$	5.8081.345	$\$ 2,500$$\$ 2,500$			\$	14,520	Conn. To SR 222	Middle
	186						\$	3,363	Conn. To SR 222	North
						Total	\$	53,320		

## Fayette County

Concept 1


Fayette County
Paving
$\begin{gathered}\text { Ramp Conc．Pvm＇t．} \\ 501-01.02\end{gathered}$







かNNNNNN NNNNNNN




م
N $\stackrel{\leftrightarrow}{\infty}$
$\underset{\sim}{\sim} \stackrel{\circ}{\infty} O$
Ramp Conc．Pvm＇t．Avea（sq．ft．）Avg．Wiath $\qquad$ T


New Interchange
Cost Estimate Summary

ITEM
COST

Clear \& Grubbing:	$\$ 24,408$	$=$	$\$ 24,000$	$\$ 24,000$
Earthwork:	$\$ 1,209,989$	$=$	$\$ 1,210,000$	$\$ 1,234,000$
Pavement Removal:	$\$ 43,583$	$=$	$\$ 44,000$	$\$ 1,278,000$
Erosion Control:	$\$ 295,000$	$=$	$\$ 295,000$	$\$ 1,573,000$
Drainage:	$\$ 41,531$	$=$	$\$ 42,000$	$\$ 1,615,000$
Structures:	$\$ 4,849,920$	$=$	$\$ 4,850,000$	$\$ 6,465,000$
Railroad:	$\$ 0$	$=$	$\$ 0$	$\$ 6,465,000$
Paving:	$\$ 1,268,020$	$=$	$\$ 1,268,000$	$\$ 7,733,000$
Retaining Walls:	$\$ 0$	$=$	$\$ 0$	$\$ 7,733,000$
Maintenance of Traffic:		$\$ 250,000$	$=$	$\$ 250,000$
Topsoil:	$\$ 120,826$	$=$	$\$ 7,983,000$	
Seeding:	$\$ 31,717$	$=$	$\$ 121,000$	$\$ 8,104,000$
Sodding:	$\$ 50,000$	$=$	$\$ 32,000$	$\$ 8,136,000$
Signing:	$\$ 200,000$	$=$	$\$ 50,000$	$\$ 8,186,000$
Signalization:	$\$ 250,000$	$=$	$\$ 200,000$	$\$ 8,386,000$
Fencing:	$\$ 77,197$	$=$	$\$ 250,000$	$\$ 8,636,000$
Guardrail:	$\$ 77,500$	$=$	$\$ 77,000$	$\$ 8,713,000$
Rip-Rap:		$\$ 25,000$	$=$	$\$ 78,000$
Other Construction:		$\$ 393,977$	$=$	$\$ 25,000$

## ESTIMATE BREAKDOWN AND QUANTITY SUMMARY

Fayette County	ESTIMATE BREAKDOWN AND QUANTITY SUMMARY								Concept 2
203-01 Road and Drain. Exc. (Uncl.)									
Length (ft.)	Width (t.)	Avg. Exc. Depth	Factor	C.Y.	Costcy		Total		
1673	65	10	27	40276	\$3.50		\$140,965.74	Ramp NE Quad	
2170	65	10	27	52241	\$3.50		\$182,842.59	Ramp NW Quad	
1650	65	10	27	39722	\$3.50		\$139,027.78	Ramp SW Quad	
2095	65	10	27	50435	\$3.50		\$176,523.15	Ramp SE Quad	
1210	120	10	27	53778	\$3.50		\$188,222.22	Conn. To SR 222 (North of I-40)	
2950	100	10	27	109259	\$3.50		\$382,407.41	Conn. To SR 222 (South of 1-40)	
8,798						Total	\$1,209,988.89		
202-03.01 Pavement Removal									
Area (sf)		sf/sy		Cost (\$/sy)					
104600		9		\$3.75		Total	\$43,583.33		
Drainage									
Bedding		Length (tt)		cy/ft		Cost (\$/cy)			
204-07		700		0.266		\$30.00	\$186.20		
Pipe		Length (tt)		Cost (\$/ft)					
607-05.02		700		\$40.00			\$28,000.00	Note: Based on 24 " concrete pipe @ 100 ' per pipe ( 7 pipes)	
Headwall Steel		Ibs/wall		\# H'walls		Cost (\$/b)			
611-07.02		172		14		\$1.30	\$3,130.40		
Headwall Conc.		cy/wall		\# H'walls		Cost (\$/cy)			
611-07.01		1.52		14		\$480.00	\$10,214.40		
						Total	\$41,531.00		
New Structure									
Length (tt.)	Width (tt.)	s.f.			Cost/s.f.		Total		
360	88	31680			\$150.00		\$4,752,000.00		
306	32	9792			\$10.00		\$97,920.00	Remove existing bridge over 1-40	
						Total	\$4,849,920.00		


	Non

$\stackrel{\sim}{i} \stackrel{\sim}{0}$ ..... No

웃우 웅 ..... 웅
รัฐีౖNANNAN
Fayette County

Paving			
	Area (sq.ft.)	Avg. Width (t.)	Depth (tt)
Ramp Conc. Pvm't.			
501-01.02	97587		0.75
Ramp Treated Base			
Ramp Base Stone			
303-01	97587		0.330
P.C. and T.c.			
402-01	97587		
402-02	97587		
Outside Shld'r.			
501-01.02	15176	5	0.75
313-03	15176	5	0.330
303-01	15176	5	0.25
303-01	15176	2	1.30
303-01	15176	5.57	
Conn. To SR 222	Lgth/Area (sq.ft.)		Depth (tt)
411-02.10 (Surf.)	204480		0.104
307-02.08 (B-M2)	204480		0.167
307-02.01 (Gr. 'A')	204480		0.292
303-01	204480		0.833
Outside Shld'r.	8320	12	1.255
	8320	4.85	1.115
411-01.07 ('E' Shldr.)	8320	10	0.125


Fayette County	ESTIMATE BREAKDOWN AND QUANTITY SUMMARY								Concept 2		
Topsoil (203-07)											
8,798	$\begin{array}{ll}41.2 & 0.5\end{array}$	27	6712.5	\$9.00	2				Total	\$	120,826
Seeding (801-01)											
Length (tt.)	Slope Lgth.(tt.)		sf	sflunit	Both Sides	factor	units	Cost (\$/unit)			
8,798	41.2		362478	1,000	2	1.25	453	\$35.00	Total	\$	31,717
Signalization											
2 Signals at Ramps									Total	\$	250,000
Fencing											
Length ( (t.)	707-02.01			Cost (\$/tt)							
4541				\$17.00					Total	\$	77,197
Guardrail											
	$\begin{aligned} & (\text { Length (tt) } \\ & 3000 \end{aligned}$		$\begin{gathered} \hline \text { Cost (\$/tt) } \\ \$ 17.50 \end{gathered}$		$\begin{gathered} \text { (\# Anch.) } \\ 10 \end{gathered}$		Cost (\$/Anch.)   \$2,500.00				
			\$52,500.00				\$25,000.00		Total		\$77,500.00

ITEM COST

Clear \& Grubbing:		\$52,505	=	\$53,000	\$53,000
Earthwork:		\$1,227,852	=	\$1,228,000	\$1,281,000
Pavement Removal:		\$42,882	$=$	\$43,000	\$1,324,000
Erosion Control:		\$317,000	=	\$317,000	\$1,641,000
Drainage:		\$41,531	=	\$42,000	\$1,683,000
Structures:		\$5,217,720	=	\$5,218,000	\$6,901,000
Railroad:		\$0	=	\$0	\$6,901,000
Paving:		\$1,482,092	=	\$1,482,000	\$8,383,000
Retaining Walls:		\$0	=	\$0	\$8,383,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$8,633,000
Topsoil:		\$162,465	=	\$162,000	\$8,795,000
Seeding:		\$42,647	=	\$43,000	\$8,838,000
Sodding:		\$25,000	$=$	\$25,000	\$8,863,000
Signing:		\$200,000	=	\$200,000	\$9,063,000
Signalization:		\$250,000	=	\$250,000	\$9,313,000
Fencing:		\$80,410	=	\$80,000	\$9,393,000
Guardrail:		\$77,500	=	\$78,000	\$9,471,000
Rip-Rap:		\$25,000	=	\$25,000	\$9,496,000
Other Construction:		\$425,188	=	\$425,000	\$9,921,000
Sub-Total:		\$9,919,792	$=$	\$9,920,000	\$9,921,000
10\% Eng. \& Cont.:		\$991,979	=	\$992,000	\$992,000
Sub-Total:		\$10,911,772	=	\$10,912,000	\$10,913,000
Total Construction Cost :	$\begin{aligned} & \text { Sub-Total } \\ & \$ 10,913,000 \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{gathered} \text { Mobil. } \\ \$ 462,000 \end{gathered}$	=	\$11,375,000
	\$11,375,000	+	$\begin{gathered} \text { 10\% Prel. E } \\ \$ 992,000 \end{gathered}$	$=$	\$12,367,000
	Row Total \$322,000	$+$	$\begin{gathered} \text { Utility Total } \\ \$ 700,000 \end{gathered}$	$\begin{aligned} & + \\ & + \end{aligned}$	Constr. Total \$12,367,000
TOTAL SECTION COST :					\$13,389,000
Mobilization Table					
\$0 to \$1,000,000	5\%				\$
\$1,000,000 to \$5,000,000	\$50,000 + 4.5\% over \$1,000,000				\$
\$5,000,000 to \$10,000,000	\$230,000 + 4\% over \$5,000,000				\$
\$10,000,000 to \$20,000,000	\$430,000 + 3.5\% over \$10,000,000				\$ 462,000
\$20,000,000 +	\$780,000 + 3\% over \$20,000,000				\$


Fayette County

Fayette County
ESTIMATE BREAKDOWN AND QUANTITY SUMMARY
Concept 3

Paving													
	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)	1	factor		Mass (lbs/cy)	Total cy or sy	lbs/Tons	Total Tons	Cost (\$/ton or cy)		Total
Ramp Conc. Pvm't.													
501-01.02	135691		0.75	1	27			3769.19			\$50.00	\$	188,460
Ramp Treated Base													
313-03	135691		0.330	1	9			4975.34			\$10.00	\$	49,753
Ramp Base Stone													
303-01	135691		0.330	1	27		2.03			3366.64	\$13.50	\$	45,450
P.C. and T.C.													
402-01	135691				9		0.35		231	22.84	\$375.00	\$	8,566
402-02	135691				9		12		2000	90.46	\$15.00	\$	1,357
Outside Shld'r.													
501-01.02	15990	6	0.75	1	27			444.17			\$50.00	\$	22,208
313-03	15990	6	0.330	1	9			586.30			\$10.00	\$	5,863
303-01	15990	6	0.25	1	27		2.03			300.55	\$13.50	\$	4,057
303-01	15990	2	1.30	1	27		2.03			1562.87	\$13.50	\$	21,099
303-01	15990	5.57			27		2.03			6696.32	\$13.50	\$	90,400
Conn. To SR 222	Lgth/Area (sq.ft.)		Depth (ft)		factor					Tons			
411-02.10 (Surf.)	241031		0.104	27	3816	2000				1771	\$60.00	\$	106,285
307-02.08 (B-M2)	241031		0.167	27	4068	2000				3032	\$60.00	\$	181,940
307-02.01 (Gr. 'A')	241031		0.292	27	4140	2000				5396	\$60.00	\$	323,753
303-01	241031		0.833	27	2.03					15096	\$14.00	\$	211,338
Outside Shld'r.	8300	12	1.255	27	2.03					9398	\$14.00	\$	131,572
	8300	4.85	1.115	27	2.03					3375	\$14.00	\$	47,245
411-01.07 ('E' Shldr.)	8300	10	0.125	27	3708	2000				712	\$60.00	\$	42,745
Access Rd. to Pilot													
411-02.10 (Surf.)	0		0.104	27	3816	2000				0	\$60.00	\$	-
307-02.08 (B-M2)	0		0.167	27	4068	2000				0	\$60.00	\$	-
307-02.01 (Gr. 'A')	0		0.292	27	4140	2000				0	\$60.00	\$	-
303-01	0		0.833	27	2.03					0	\$14.00	\$	-
Outside Shld'r.	0	12	1.255	27	2.03					0	\$14.00	\$	-
	0	4.85	1.115	27	2.03					0	\$14.00	\$	-
411-01.07 ('E' Shldr.)	0	10	0.125	27	3708	2000				0	\$60.00	\$	-
											Total	\$	1,482,092



New Interchange
Cost Estimate Summary

ITEM

Clear \& Grubbing:		\$7,296	=	\$7,000	\$7,000
Earthwork:		\$1,157,593	=	\$1,158,000	\$1,165,000
Pavement Removal:		\$2,631	=	\$3,000	\$1,168,000
Erosion Control:		\$334,000	=	\$334,000	\$1,502,000
Drainage:		\$26,199	=	\$26,000	\$1,528,000
Structures:		\$6,211,070	=	\$6,211,000	\$7,739,000
Railroad:		\$0	$=$	\$0	\$7,739,000
Paving:		\$1,272,243	=	\$1,272,000	\$9,011,000
Retaining Walls:		\$0	=	\$0	\$9,011,000
Maintenance of Traffic:		\$250,000	=	\$250,000	\$9,261,000
Topsoil:		\$156,766	=	\$157,000	\$9,418,000
Seeding:		\$41,151	=	\$41,000	\$9,459,000
Sodding:		\$50,000	$=$	\$50,000	\$9,509,000
Signing:		\$200,000	$=$	\$200,000	\$9,709,000
Signalization:		\$250,000	=	\$250,000	\$9,959,000
Fencing:		\$10,914	$=$	\$11,000	\$9,970,000
Guardrail:		\$77,500	=	\$78,000	\$10,048,000
Rip-Rap:		\$25,000	=	\$25,000	\$10,073,000
Other Construction:		\$383,629	=	\$384,000	\$10,457,000
Sub-Total:		\$10,455,992	=	\$10,456,000	\$10,457,000
10\% Eng. \& Cont.:		\$1,045,599	=	\$1,046,000	\$1,046,000
Sub-Total:		\$11,501,591	=	\$11,502,000	\$11,503,000
Total Construction Cost :	$\begin{aligned} & \text { Sub-Total } \\ & \$ 11,503,000 \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$	$\begin{aligned} & \text { Mobil. } \\ & \$ 483,000 \end{aligned}$	=	\$11,986,000
	\$11,986,000	+	10\% Prel. E \$1,046,000	$=$	\$13,032,000
	Row Total \$336,000	$+$	Utility Total \$450,000	$+$	Constr. Total \$13,032,000
TOTAL SECTION COST :					\$13,818,000
Mobilization Table					
\$0 to \$1,000,000	5\%				\$
\$1,000,000 to \$5,000,000	\$50,000 + 4.5\% over \$1,000,000				\$
\$5,000,000 to \$10,000,000	\$230,000 + 4\% over \$5,000,000				\$
\$10,000,000 to \$20,000,000	\$430,000 + 3.5\% over \$10,000,000				\$ 483,000
\$20,000,000 +	\$780,000 + 3\% over \$20,000,000				\$

Fayette County
ESTIMATE BREAKDOWN AND QUANTITY SUMMARY

Fayette County	ESTIMATE BREAKDOWN AND QUANTITY SUMMARY									Concept 4
Right of Way Cost cost										
Parcel	Area (sf)	Acres	$\underset{\substack{\text { (\$/Acre) } \\ \text { factor } \\ \text { (1.2 }}}{\text { Cost }}$	Improvements (1.2 factor)	Land Cost		otal			
	47,472	1.090	\$ 13,000.00		14,167.49			North of 1-40		
	189,452	4.349	\$ 13,000.00		\$ 56,539.85			South of l-40		
Sub-Total		5.439		\$ -	70,707.35	\$	71,000			
Cost of Bldgs.						\$				
Contengenices					=	\$	250,000	Additional damage	Pilot and Deerfield	
Total Land \& Improv	ment Costs				=	\$	321,000	(Rounded)		
Incidentals	5	x	\$ 3,000	Per Tract for Incid	=	\$	15,000			
Replacement Housir	0	$x$	\$ 12,000	Per Unit	=	\$				
Moving Expenses	0	x	25,000	Per Unit	$=$	\$	-			
total row costs					=	\$	336,000			
201-07.05 Removal and Disposal of Brush and Trees (Clear. and Grub.)										
Length (tt.)	Width (tt.)(Avg.)	Area (sq.ft./ac.)	Acres	Cost (\$/ac.)						
0	75	0	0.000	\$2,500		\$		Ramp NE		
0	75	0	0.000	\$2,500		\$		Ramp NW		
0	75	0	0.000	\$2,500		\$		Ramp SW		
0	75	0	0.000	\$2,500		\$		Ramp SE		
575	75	43125	0.990	\$2,500		\$	2,475	Conn. To SR 222	North of 1-40	
700	120	84000	1.928	\$2,500		\$	4,821	Conn. To SR 222	South of 1-40	
					Total	\$	7,296			


712-02.02 Interconnected Portable Barrier Rail
Total Maintenance of Traffic
Signing $\quad$ Cost (\$/s.f.f.)
Lgth (ft)
1500
Utility Relocation Cost
6" Water
12" Water
Utility Poles
6" Gas
Fayette County
ESTIMATE BREAKDOWN AND QUANTITY SUMMARY



꿍




NANNA
ESTIMATE BREAKDOWN AND QUANTITY SUMMARY $\qquad$
factor
27

-     + 




New Interchange
Cost Estimate Summary


712-06

Maintenance of Traffic	
Drums (Ea.) $\quad$ Cost (\$/drum)	

Signs (s.f.)
Cost (\$/drum)
Cost (\$/s.f.)
712-02.02 Interconnected Portable Barrier Rail
Lgth.(ft.)
712-07.03 Temp
$\begin{array}{cr}\text { 12-07.03 Temporary Barricades } \\ \text { Lgth.(ft.) } & \text { No. }\end{array}$
Total Maintenance of Traffic


ESTIMATE BREAKDOWN AND QUANTITY SUMMARY Concept 5
号

Fayette County	ESTIMATE BREAKDOWN AND QUANTITY SUMMARY									Concept 5
203-01 Road and Drain. Exc. (Uncl.)										
Length (ft.)	Width (ft.)	Avg. Exc. Depth	Factor	C.Y.	Costcy		Total			
633	65	10	27	15239	\$3.50		\$53,336.11	Ramp NE		
340	65	10	27	8185	\$3.50		\$28,648.15	Ramp NW		
1540	65	10	27	37074	\$3.50		\$129,759.26	Ramp SW		
1975	65	10	27	47546	\$3.50		\$166,412.04	Ramp SE		
2100	50	10	27	38889	\$3.50		\$136,111.11	Conn. To S		
6,588						Total	\$514,266.67			
202-03.01 Pavement Removal										
Area (sf)		st/sy		Cost (\$/sy)						
21519		9		\$3.75		Total	\$8,966.25			
Drainage										
Bedding		Length (t)		cy/ft		Cost (\$/cy)				
204-07		600		0.266		\$30.00	\$159.60			
Pipe		Length (t)		Cost (\$/ft)						
607-05.02		600		\$40.00			\$24,000.00			
Headwall Steel		lbs/wall		\# H'walls		Cost (\$/lb)				
611-07.02		172		12		\$1.30	\$2,683.20			
Headwall Conc.		cy/wall		\# H'walls		Cost (\$/cy)				
611-07.01		1.52		12		\$480.00	\$8,755.20			
Catchbasins	3				\$2,100.00		\$6,300.00			
						Total	\$41,898.00			
New Structure										
Length (t.)	Width (tt.)	s.f.	Height (t.)		Cost/s.f.		Total			
306	84	25704			\$187.50		\$6,024,375.00	25\% Incre	in c	
306	32	9792			\$10.00		\$97,920.00	Remove	ing	
900		9000	10		\$100.00		\$900,000.00	Retaining	al	
						Total	\$7,022,295.00			

Concept 5

Paving													
	Area（sq．ft．）	Avg．Width（tt．）	Depth（tt）	1	factor		Mass（bs／cy）	Total cy or sy	lbs／Tons	Total Tons	Cost（\＄／ton or cy）		Total
Ramp Conc．Pvm＇t．													
501－01．02	60639		0.75	1	27			1684.42			\＄50．00	\＄	84，221
Ramp Treated Base													
313－03	60639		0.330	1	9			2223.43			\＄10．00	\＄	22，234
Ramp Base Stone													
303－01	60639		0.330	1	27		2.03			1504.52	\＄13．50	\＄	20，311
P．C．and T．C．													
402－01	60639				9		0.35		231	10.21	\＄375．00	\＄	3，828
402－02	60639				9		12		2000	40.43	\＄15．00	\＄	606
Outside Shld＇r．													
501－01．02	8976	5	0.75	1	27			249.33			\＄50．00	\＄	12，467
313－03	8976	5	0.330	1	9			329.12			\＄10．00	\＄	3，291
303－01	8976	5	0.25	／	27		2.03			168.72	\＄13．50	\＄	2，278
303－01	8976	2	1.30	1	27		2.03			877.32	\＄13．50	\＄	11，844
303－01	8976	5.57			27		2.03			3758.98	\＄13．50	\＄	50，746
Conn．To SR 222	Lgth／Area（sq．ft．）		Depth（ti）		factor					Tons			
411－02．10（Surf．）	139838		0.104	27	3816	2000				1028	\＄60．00	\＄	61，663
307－02．08（B－M2）	139838		0.167	27	4068	2000				1759	\＄60．00	\＄	105，555
307－02．01（Gr．＇A＇）	139838		0.292	27	4140	2000				3131	\＄60．00	\＄	187，830
303－01	139838		0.833	27	2.03					8758	\＄14．00	\＄	122，611
Outside Shld＇r．	4200	12	1.255	27	2.03					4756	\＄14．00		66，579
	4200	4.85	1.115	27	2.03					1708	\＄14．00	\＄	23，907
411－01．07（＇E＇Shldr．）	4200	10	0.125	27	3708	2000				361	\＄60．00	\＄	21，630

NへNへNへN

Fayette County
Ramp Conc．Pvm＇t．
501－01．02
$313-03$
Ramp Base Stone
P．C．and T．C．
$402-02$
Outside Shld＇r．
$313-03$
$303-01$
$303-01$
$303-01$
Conn．To SR 222
$303-01$
Outside Shld＇r．
411－01．07（＇E＇Shldr．）


New Interchange
Cost Estimate Summary

ITEM COST

Fayette County
ESTIMATE BREAKDOWN AND QUANTITY SUMMARY

Right of Way Cost								
Parcel	Area (sf)	Acres	$\begin{gathered} \text { Cost } \\ \text { (\$/Acre)*1.2 } \\ \text { factor } \end{gathered}$	Improvements (1.2 factor)	Land Cost		Total	
	485,923	11.155	\$ 13,000.00		\$ 145,018.34			North of 1-40
	719,620	16.520	\$ 13,000.00		\$ 214,762.63			South of l-40
Sub-Total		27.675		\$	\$ 359,780.97	\$	360,000	
Cost of Bldgs. Contengenices						\$		
Total Land \& Improvement Costs					=	\$	360,000	(Rounded)
Incidentals	7	X	\$ 3,000	Per Tract for Incid	=	\$	21,000	
Replacement Housir	0	x	\$ 12,000	Per Unit	=	\$		
Moving Expenses	0	X	\$ 25,000	Per Unit	=	\$	-	
TOTAL ROW COSTS					=	\$	381,000	
201-07.05 Removal and Disposal of Brush and Trees (Clear. and Grub.)								
Length (tt.)	Width (ft.)(Avg.)	Area (sq.ft./ac.)	Acres	Cost (\$/ac.)				
530	200	106,000	2.433	\$2,500		\$	6,084	Ramp NE Quad
565	170	96,050	2.205	\$2,500		\$	5,513	Ramp NW Quad
725	310	224,750	5.160	\$2,500		\$	12,899	Ramp SW Quad
790	250	197,500	4.534	\$2,500		\$	11,335	Ramp SE Quad
4800	135	648000	14.876	\$2,500		\$	37,190	Conn. To SR 222
					Total	\$	73,020	


712-02.02 Interconnected Portable Barrier Rai
Cost (\$/ft.)
712-07.03 Temporary Barricades
Total Maintenance of Traffic
Utility Relocation Cost
6" Water
12 " Water
Utility Poles
6" Gas
\$150,000.00

$$
10
$$

Total

Fayette County	ESTIMATE BREAKDOWN AND QUANTITY SUMMARY									Concept 6
203-01 Road and Drain. Exc. (Uncl.)										
Length (ft.)	Width (tt.)	Avg. Exc. Depth	Factor	C.Y.	Cost/cy		Total			
1560	65	10	27	37556	\$3.50		\$131,444.44	Ramp NE Quad		
1430	65	10	27	34426	\$3.50		\$120,490.74	Ramp NW Quad		
1350	65	10	27	32500	\$3.50		\$113,750.00	Ramp SW Quad		
2320	65	10	27	55852	\$3.50		\$195,481.48	Ramp SE Quad		
5630	100	10	27	208519	\$3.50		\$729,814.81	Conn. To SR 222		
12,290						Total	\$1,290,981.48			
202-03.01 Pavement Removal										
Area (sf)		sf/sy		Cost (\$/sy)						
73645		9		\$3.75		Total	\$30,685.42			
Drainage										
Bedding		Length (t)		cy/ft		Cost (\$/cy)				
204-07		800		0.266		\$30.00	\$212.80			
Pipe		Length (t)		Cost (\$/ft)						
607-05.02		800		\$40.00			\$32,000.00		Note: Based on 24 " concrete pipe @ 100' per pipe (8 pipes)	
Headwall Steel		lbs/wall		\# H'walls		Cost (\$/lb)				
611-07.02		172		16		\$1.30	\$3,577.60			
Headwall Conc.		cy/wall		\# H'walls		Cost (\$/cy)				
611-07.01		1.52		16		\$480.00	\$11,673.60			
						Total	\$47,464.00			
New Structure										
Length (t.)	Width (t.)	s.f.		Costll.f.	Cost/s.f.		Total			
336	88	29568			\$150.00		\$4,435,200.00		1-40 Bridge	
306	32	9792			\$10.00		\$97,920.00		Remove Exist. Bridge	
						Total	\$4,533,120.00			


(\$/ton or cy)	Total	
$\$ 50.00$	$\$$	125,589
$\$ 10.00$	$\$$	33,155
$\$ 13.50$	$\$$	30,288
$\$ 375.00$	$\$$	5,709
$\$ 15.00$	$\$$	904
$\$ 50.00$	$\$$	18,500
$\$ 10.00$	$\$$	4,884
$\$ 13.50$	$\$$	3,380
$\$ 13.50$	$\$$	17,576
$\$ 13.50$	$\$$	75,305
$\$ 60.00$	$\$$	93,519
$\$ 60.00$	$\$$	160,086
$\$ 60.00$	$\$$	284,866
$\$ 14.00$	$\$$	185,954
$\$ 14.00$	$\$$	178,494
$\$ 14.00$	$\$$	64,094
$\$ 60.00$	$\$$	57,989

ESTIMATE BREAKDOWN AND QUANTITY SUMMARY

$\begin{array}{cccc}\text { Total cy or sy } & \text { lbs/cy) } & \text { lbs/Tons } & \text { Total Tons } \\ & 2511.78 & & \\ & 3315.55 & & \\ & & & 2243.52 \\ 2.03 & & 231 & 15.22 \\ 0.35 & & 2000 & 60.28 \\ 12 & 370.00 & & \\ & 488.40 & & 250.37 \\ & & 1301.91 \\ 2.03 & & 5578.17 \\ 2.03 & & & \end{array}$
$\begin{array}{cccc}\text { Total cy or sy } & \text { lbs/cy) } & \text { lbs/Tons } & \text { Total Tons } \\ & 2511.78 & & \\ & 3315.55 & & \\ & & & 2243.52 \\ 2.03 & & 231 & 15.22 \\ 0.35 & & 2000 & 60.28 \\ 12 & 370.00 & & \\ & 488.40 & & 250.37 \\ & & 1301.91 \\ 2.03 & & 5578.17 \\ 2.03 & & & \end{array}$


… $\quad$ Nत̃Nへ̃へ̃
$\qquad$
facto
27
, -

Paving			
$\begin{array}{c}\text { Ramp Conc. Pvm't. }\end{array}$	Area (sq.ft.)	Avg. Width (ft.)	Depth (ft)
501-01.02	90424		0.75
$\begin{array}{c}\text { Ramp Treated Base } \\ \text { 313-03 }\end{array}$	90424		0.330
$\begin{array}{c}\text { Ramp Base Stone } \\ \text { 303-01 }\end{array}$	90424		0.330
$\begin{array}{c}\text { P.C. and T.C. }\end{array}$			
402-01	90424		
402-02	90424		
Outside Shld'r.			
501-01.02	13320	5	0.75
313-03	13320	5	0.330
303-01	13320	5	0.25
303-01	13320	2	1.30
303-01	13320	5.57	
Conn. To SR 222	Lgth/Area (sq.ft.)		0.104
411-02.10 (Surf.)	212080		0.167
307-02.08 (B-M2)	212080		0.292
307-02.01 (Gr. 'A')	212080		0.833
303-01	212080	12	1.255
Outside Shld'r.	11260	4.85	1.115
411-01.07 ('E' Shldr.)	11260		0.125



## APPENDIX D

## HIGHWAY CAPACITY ANALYSIS OUTPUT FILES

Freeway Mainline Segments Highway Capacity Software Computer Printouts

































## Merge Ramps

## Highway Capacity Software Computer Printouts







Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} / \mathrm{c}) \\ (\mathrm{Veh} / \mathrm{h}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$\mathrm{f}_{\mathrm{HV}}$	$\mathrm{f}_{\mathrm{p}}$	$\mathrm{V}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	3075	0.90	Level	25	0	0.889	1.00	3844
Ramp	237	0.90	Level	3	0	0.985	1.00	267
UpStream								
DownStream	274	0.90	Level	3	0	0.985	1.00	309
Merge Areas					Diverge Areas			
Estimation of $\mathbf{v}_{12}$					Estimation of $\mathbf{v}_{12}$			
$V_{12}=V_{F}\left(P_{F M}\right)$   $L_{E Q}=$ (Equation 25-2 or 25-3)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{\mathrm{EQ}}=\quad \quad$ (Equation $25-8$ or $25-9$			
$\mathrm{P}_{\mathrm{FM}}=$	1.000 using Equation (Exhibit 25-5)				$P_{F D}=$		using Equation (Exhibit 25-12)	
$V_{12}=$	3844 pc/h				$\mathrm{V}_{12}=$		$\mathrm{pc} / \mathrm{h}$	
$\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}$	$0 \mathrm{pc} / \mathrm{h}$ (Equation 25-4 or 25-5)				$V_{3}$ or $V_{\text {av34 }}$		pc/h (Equation 25-15 or 25-16)	
Is $V_{3}$ or $V_{\text {av34 }}>$	c/h? 「Y	No			Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$ ? Г Yes Г No			
$\begin{aligned} & \text { Is } V_{3} \text { or } V_{\text {av3 }}= \\ & \text { if } Y e s, V_{122}= \end{aligned}$	/2 Г Yes Г No				$\text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av3 } 3}>1.5 * \mathrm{~V}_{12} / 2 \text { Г Yes ГNo }$			

Capacity Checks
Capacity Checks



Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} / \mathrm{c}) \\ (\mathrm{Veh} / \mathrm{h}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$\mathrm{f}_{\mathrm{HV}}$	$\mathrm{f}_{\mathrm{p}}$	$\mathrm{V}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2807	0.90	Level	25	0	0.889	1.00	3509
Ramp	204	0.90	Level	3	0	0.985	1.00	230
UpStream								
DownStream	355	0.90	Level	3	0	0.985	1.00	400
Merge Areas					Diverge Areas			
Estimation of $\mathbf{v}_{12}$					Estimation of $\mathrm{v}_{12}$			
$V_{12}=V_{F}\left(P_{F M}\right)$   $L_{E Q}=$ (Equation 25-2 or 25-3)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{\text {EQ }}=\quad \quad$ (Equation 25-8 or $25-9$			
$\mathrm{P}_{\mathrm{FM}}=$	1.000 using Equation (Exhibit 25-5)				$P_{F D}=$		using Equation (Exhibit 25-12)	
$V_{12}=$	$3509 \mathrm{pc} / \mathrm{h}$				$\mathrm{V}_{12}=$		$\mathrm{pc} / \mathrm{h}$	
$\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}$	$0 \mathrm{pc} / \mathrm{h}$ (Equation 25-4 or 25-5)				$V_{3}$ or $V_{\text {av34 }}$		pc/h (Equation 25-15 or 25-16)	
Is $V_{3}$ or $V_{\text {av34 }}>$	c/h? 「Y	No			Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc/h}$ ? Г Yes Г No			
$\begin{aligned} & \text { Is } V_{3} \text { or } V_{\text {av3 }}= \\ & \text { if } Y e s, V_{122}= \end{aligned}$	/2 Г Yes V No				$\text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av3 } 3}>1.5 * \mathrm{~V}_{12} / 2 \text { Г Yes ГNo }$			

Capacity Checks
Capacity Checks

	Actual	Capacity		LOS F?		Actual	Capacity		LOS F?
$\mathrm{V}_{\mathrm{FO}}$	3739	Exhibit 25-7		No	$\mathrm{V}_{\mathrm{F}}$		Exhibit 25-14		
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$		Exhibit 25-14		
					$\mathrm{V}_{\mathrm{R}}$		Exhibit 25-3		
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$	3739	Exhibit 25-7	4600:All	No	$\mathrm{V}_{12}$		Exhibit 25-14		
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$\begin{array}{ll} \quad & D_{R}=5.475+0.00734 \mathrm{v}_{R}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}} \\ \mathrm{D}_{\mathrm{R}}= & 31.4(\text { pc/mi/ln }) \\ \text { LOS }= & D \text { (Exhibit } 25-4) \end{array}$					$\begin{array}{ll}  & \mathrm{D}_{\mathrm{R}}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{D}_{\mathrm{R}}= & (\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \\ \mathrm{LOS}= & \text { (Exhibit 25-4) } \end{array}$				
Speed Determination					Speed Determination				
$\mathrm{M}_{\mathrm{S}}=$ 0.450 (Exibit 25-19)   $\mathrm{S}_{\mathrm{R}}=$ 57.4 mph (Exhibit 25-19)   $\mathrm{S}_{0}=$ $\mathrm{N} / \mathrm{A} \mathrm{mph}$ (Exhibit 25-19)   $\mathrm{S}=$ 57.4 mph (Exhibit 25-14)					$\begin{array}{ll} \mathrm{D}_{\mathrm{S}}= & \text { (Exhibit 25-19) } \\ \mathrm{S}_{\mathrm{R}}= & \text { mph (Exhibit 25-19) } \\ \mathrm{S}_{0}= & \text { mph (Exhibit 25-19) } \\ \mathrm{S}= & \text { mph (Exhibit 25-15) } \end{array}$				







Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} / \mathrm{c}) \\ (\mathrm{Veh} / \mathrm{h}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$\mathrm{f}_{\mathrm{HV}}$	$\mathrm{f}_{\mathrm{p}}$	$\mathrm{V}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1828	0.90	Level	25	0	0.889	1.00	2285
Ramp	387	0.90	Level	10	0	0.952	1.00	452
UpStream								
DownStream	374	0.90	Level	10	0	0.952	1.00	436
Merge Areas					Diverge Areas			
Estimation of $\mathbf{v}_{12}$					Estimation of $\mathbf{v}_{12}$			
$V_{12}=V_{F}\left(P_{F M}\right)$   $L_{E Q}=$ (Equation 25-2 or 25-3)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{\mathrm{EQ}}=\quad \quad$ (Equation $25-8$ or $25-9$			
$\mathrm{P}_{\mathrm{FM}}=$	1.000 using Equation (Exhibit 25-5)				$P_{F D}=$		using Equation (Exhibit 25-12)	
$V_{12}=$	2285 pc/h				$\mathrm{v}_{12}=$		$\mathrm{pc} / \mathrm{h}$	
$\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}$	$0 \mathrm{pc} / \mathrm{h}$ (Equation 25-4 or 25-5)				$V_{3}$ or $V_{\text {av34 }}$		pc/h (Equation 25-15 or 25-16)	
Is $V_{3}$ or $V_{\text {av34 }}>$	c/h? 「Y	No			Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc/h}$ ? Г Yes Г No			
$\begin{aligned} & \text { Is } V_{3} \text { or } V_{\text {av3 }}= \\ & \text { if } Y e s, V_{122}= \end{aligned}$	${ }_{12} / 2 \Gamma \mathrm{Yes}$ 『 No				$\text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av3 } 3}>1.5 * \mathrm{~V}_{12} / 2 \text { Г Yes ГNo }$			

Capacity Checks
Capacity Checks




Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} / \mathrm{c}) \\ (\mathrm{Veh} / \mathrm{h}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$\mathrm{f}_{\mathrm{HV}}$	$\mathrm{f}_{\mathrm{p}}$	$\mathrm{V}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2596	0.90	Level	25	0	0.889	1.00	3245
Ramp	275	0.90	Level	10	0	0.952	1.00	321
UpStream								
DownStream	754	0.90	Level	10	0	0.952	1.00	880
Merge Areas					Diverge Areas			
Estimation of $\mathbf{v}_{12}$					Estimation of $\mathbf{v}_{12}$			
$V_{12}=V_{F}\left(P_{F M}\right)$   $L_{E Q}=$ (Equation 25-2 or 25-3)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{\mathrm{EQ}}=\quad \quad$ (Equation $25-8$ or $25-9$			
$\mathrm{P}_{\mathrm{FM}}=$	1.000 using Equation (Exhibit 25-5)				$P_{F D}=$		using Equation (Exhibit 25-12)	
$V_{12}=$	$3245 \mathrm{pc} / \mathrm{h}$				$\mathrm{v}_{12}=$		$\mathrm{pc} / \mathrm{h}$	
$\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}$	$0 \mathrm{pc} / \mathrm{h}$ (Equation 25-4 or 25-5)				$V_{3}$ or $V_{\text {av34 }}$		pc/h (Equation 25-15 or 25-16)	
Is $V_{3}$ or $V_{\text {av34 }}>$	c/h? 「Y	No			Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc/h}$ ? Г Yes Г No			
$\begin{aligned} & \text { Is } V_{3} \text { or } V_{\text {av3 }}= \\ & \text { if } Y e s, V_{122}= \end{aligned}$	/2 Г Yes Г No				$\text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av3 } 3}>1.5 * \mathrm{~V}_{12} / 2 \text { Г Yes ГNo }$			

Capacity Checks
Capacity Checks



Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} / \mathrm{c}) \\ (\mathrm{Veh} / \mathrm{h}) \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$\mathrm{f}_{\mathrm{HV}}$	$\mathrm{f}_{\mathrm{p}}$	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2768	0.90	Level	25	0	0.889	1.00	3460
Ramp	410	0.90	Level	10	0	0.952	1.00	478
UpStream								
DownStream	449	0.90	Level	10	0	0.952	1.00	524
Merge Areas					Diverge Areas			
Estimation of $\mathbf{v}_{12}$					Estimation of $\mathbf{v}_{12}$			
$V_{12}=V_{F}\left(P_{F M}\right)$   $L_{E Q}=$ (Equation 25-2 or 25-3)					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{\mathrm{EQ}}=\quad \quad$ (Equation $25-8$ or $25-9$			
$\mathrm{P}_{\mathrm{FM}}=$	1.000 using Equation (Exhibit 25-5)				$\mathrm{P}_{\mathrm{FD}}=$		using Equation (Exhibit 25-12)	
$V_{12}=$	3460 pc/h				$\mathrm{V}_{12}=$		pc/h	
$\left\{\begin{array}{l} \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }} \quad 0 \quad \mathrm{pc} / \mathrm{h} \text { (Equation 25-4 or 25-5) } \\ \text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc/h} \text { ? } \text { Yes } \mathrm{Y} \text { No } \end{array}\right.$					$V_{3}$ or $V_{\text {av34 }}$		pc/h (Equation 25-15 or 25-16)	
					Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}>2,700 \mathrm{pc} / \mathrm{h}$ ? Г Yes Г No			
Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}>1.5 * \mathrm{~V}_{12} / 2$ Г Yes ए No	${ }_{12} / 2$ 「 Yes ए No				$\text { Is } \mathrm{V}_{3} \text { or } \mathrm{V}_{\text {av3 } 3}>1.5 * \mathrm{~V}_{12} / 2 \text { Г Yes ГNo }$			
If Yes, $\mathrm{V}_{12 \mathrm{a}}=\quad \mathrm{pc} / \mathrm{h}$ (Equation 25-8)	pc/h (Equation 25-8)				If $\mathrm{Yes}, \mathrm{V}_{12 \mathrm{a}}=\quad \mathrm{pc} / \mathrm{h}$ (Equation 25-18)			

Capacity Checks
Capacity Checks

	Actual	Capacity		LOSF?		Actual	Capacity		LOS F?
$\mathrm{V}_{\mathrm{FO}}$	3938	Exhibit 25-7		No	$V_{F}$		Exhibit 25-14		
					$\mathrm{V}_{\mathrm{FO}}=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}$		Exhibit 25-14		
					$\mathrm{V}_{\mathrm{R}}$		Exhibit 25-3		
Flow Entering Merge Influence Area					Flow Entering Diverge Influence Area				
	Actual	Max Desirable		Violation?		Actual	Max Desirable		Violation?
$\mathrm{V}_{\mathrm{R} 12}$	3938	Exhibit 25-7	4600:All	No	$\mathrm{V}_{12}$		Exhibit 25-14		
Level of Service Determination (if not F)					Level of Service Determination (if not F)				
$\begin{aligned} & D_{R}=5 \\ & D_{R}= \\ & \text { LOS }= \\ & D(E) \end{aligned}$	$D_{R}=5.475+0.00734 \mathrm{v}_{\mathrm{R}}+0.0078 \mathrm{~V}_{12}-0.00627 \mathrm{~L}_{\mathrm{A}}$				$\begin{array}{ll} \quad & D_{R}=4.252+0.0086 \mathrm{~V}_{12}-0.009 \mathrm{~L}_{\mathrm{D}} \\ \mathrm{D}_{\mathrm{R}}= & \text { (pc/mi/ln) } \\ \mathrm{LOS}= & \text { (Exhibit 25-4) } \\ \hline \end{array}$				
Speed Determination					Speed Determination				
$\mathrm{M}_{\mathrm{S}}=0.486$ (Exibit 25-19)					$\mathrm{D}_{\mathrm{s}}=$ (Exhibit 25-19)				
$\mathrm{S}_{\mathrm{R}}=\quad 56.4 \mathrm{mph}$ (Exhibit 25-19)					$\mathrm{S}_{\mathrm{R}}=\quad \mathrm{mph}($ Exhibit 25-19)				
$\mathrm{S}_{0}=\quad \mathrm{N} / \mathrm{Amph}($ Exhibit 25-19)									
$S=\quad 56.4 \mathrm{mph}$ (Exhibit 25-14)					$\mathrm{S}=\quad \mathrm{mph}($ Exhibit 25-15)				












## Diverge Ramps

## Highway Capacity Software Computer Printouts







RAMPS AND RAMP JUNCTIONS WORKSHEET				
General Information Site Information				
Analyst	SKB	Freeway/Dir of Travel	1-40 EB	
Agency or Company	TDOT/TranSystems	Junction	Exit 35	
Date Performed	04/18/2011	Jurisdiction	Fayette County	
Analysis Time Period	PM Peak Period	Analysis Year	2034	
Project Description Existing Conditions				
Inputs				
Upstream Adj Ramp	Terrain: Level			Downstream Adj Ramp
$\square \mathrm{Yes}$				
				$\Gamma$ Yes 「on
Г No Гoff				$\square$ No 「 off
$L_{\text {up }}=2000 \mathrm{ft}$				$\mathrm{L}_{\text {down }}=\mathrm{ft}$
$\mathrm{V}_{\mathrm{u}}=204 \mathrm{veh} / \mathrm{h}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{FF}}=70.0 \mathrm{mph} \\ \text { Sketch (show lanes, } \mathrm{L}_{\mathrm{A}^{\prime}} \mathrm{L}_{\mathrm{D}}, \mathrm{~V}_{\mathrm{RR}}, \mathrm{~V}_{\mathrm{F}} \text { ) } \\ \hline \end{gathered}$			$\mathrm{v}_{\mathrm{D}}=\mathrm{veh} / \mathrm{h}$
$\mathrm{v}_{\mathrm{u}}=204 \mathrm{veh} / \mathrm{h}$				$\mathrm{v}_{\mathrm{D}}{ }^{\text {a }}$ ven/h

Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ \text { (Veh/hr) } \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$\mathrm{f}_{\mathrm{HV}}$	$\mathrm{f}_{\mathrm{p}}$	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	2603	0.90	Level	25	0	0.889	1.00	3254
Ramp	355	0.90	Level	3	0	0.985	1.00	400
UpStream	204	0.90	Level	3	0	0.985	1.00	230
DownStream								
Merge Areas					Diverge Areas			
Estimation of $\mathbf{v}_{12}$					Estimation of $\boldsymbol{v}_{12}$			
$V_{12}=V_{F}\left(P_{F M}\right)$					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{\text {EQ }}=$ (Equation			8 or 25-9)
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 25-5)		(Equation 25-2 or 25-3)		$\mathrm{P}_{\mathrm{FD}}=\quad 1.000$ usi			quation (Exhibit 25-12)
$\mathrm{V}_{12}=$	$\mathrm{pc} / \mathrm{h}$				$\mathrm{V}_{12}=$		3254 pc/h	
$\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}$	pc/h (Equation 25-4 or 25-5)				$V_{3}$ or $v_{\text {av34 }}$		$0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16)	
Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {a }} 34$	pc/h? Г Y				Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av3 }}>2,700 \mathrm{pc} / \mathrm{h}$ ? Г Yes ए No			
Is $V_{3}$ or $\mathrm{V}_{\text {av34 }}$	/2 $\square$ Yes Г No				Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av3 }}>1.5 * \mathrm{~V}_{12} / 2$		$\ulcorner$ Yes $\bar{V}$ No	
If Yes, $\mathrm{V}_{12 \mathrm{a}}=$	pc/h (Equation 25-8)				$1 \mathrm{If} Y \mathrm{Ye}, \mathrm{~V}_{12 \mathrm{a}}=$		$\mathrm{pc} / \mathrm{h}$ (Equation 25-18)	

Capacity Checks
Capacity Checks





Conversion to pc/h Under Base Conditions

(pc/h)	$\begin{gathered} \mathrm{V} \\ \text { (Veh/hr) } \end{gathered}$	PHF	Terrain	\%Truck	\%Rv	$\mathrm{f}_{\mathrm{HV}}$	$\mathrm{f}_{\mathrm{p}}$	$\mathrm{v}=\mathrm{V} / \mathrm{PHF} \times \mathrm{f}_{\mathrm{HV}} \times \mathrm{f}_{\mathrm{p}}$
Freeway	1582	0.90	Level	25	0	0.889	1.00	1978
Ramp	715	0.90	Level	3	0	0.985	1.00	806
UpStream	232	0.90	Level	3	0	0.985	1.00	262
DownStream								
Merge Areas					Diverge Areas			
Estimation of $\mathbf{v}_{12}$					Estimation of $\mathbf{v}_{12}$			
$V_{12}=V_{F}\left(P_{F M}\right)$					$\mathrm{V}_{12}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{R}}\right) \mathrm{P}_{\mathrm{FD}}$			
					$L_{\text {EQ }}=$ (Equation			8 or 25-9)
$\mathrm{P}_{\mathrm{FM}}=$	using Equation (Exhibit 25-5)		(Equation 25-2 or 25-3)		$\mathrm{P}_{\mathrm{FD}}=\quad 1.000$ usi			quation (Exhibit 25-12)
$\mathrm{V}_{12}=$	$\mathrm{pc} / \mathrm{h}$				$\mathrm{V}_{12}=$		1978 pc/h	
$\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av34 }}$	pc/h (Equation 25-4 or 25-5)				$V_{3}$ or $v_{\text {av34 }}$		$0 \mathrm{pc} / \mathrm{h}$ (Equation 25-15 or 25-16)	
Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {a }} 34$	pc/h? Г Y				Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av3 }}>2,700 \mathrm{pc} / \mathrm{h}$ ? Г Yes ए No			
Is $V_{3}$ or $\mathrm{V}_{\text {av34 }}$	/2 $\square$ Yes Г No				Is $\mathrm{V}_{3}$ or $\mathrm{V}_{\text {av3 }}>1.5 * \mathrm{~V}_{12} / 2$		$\ulcorner$ Yes $\bar{V}$ No	
If Yes, $\mathrm{V}_{12 \mathrm{a}}=$	pc/h (Equation 25-8)				$1 \mathrm{If} Y \mathrm{Ye}, \mathrm{~V}_{12 \mathrm{a}}=$		$\mathrm{pc} / \mathrm{h}$ (Equation 25-18)	

Capacity Checks
Capacity Checks

















Two Lane Segments Highway Capacity Software Computer Printouts

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 59   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	458
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	247
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	4.3
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	33.3
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	450
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	243
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	32.7
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	23.0
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	55.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.14
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	112
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	404
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.4
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 59   From/To South of -40   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	473
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	289
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	4.3
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	33.2
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	465
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	284
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	33.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	21.8
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	55.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.15
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	116
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	417
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.5
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 59   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	436
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	244
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	4.4
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	33.4
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	428
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	240
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	31.4
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	22.9
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	54.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	$B$
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.14
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	107
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	384
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.2
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 59   From/To South of -40   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	452
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	249
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	4.3
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	33.3
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	444
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	244
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	32.3
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	22.9
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	55.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.14
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	111
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	398
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.3
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 59   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	620
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	360
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	3.8
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	32.6
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	619
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	359
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	42.0
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	20.1
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	62.0
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.19
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	154
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	555
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	4.7
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 59   From/To South of -40   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	643
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	392
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	3.7
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	32.5
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	641
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	391
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	43.1
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	19.4
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	62.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.20
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	160
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	575
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15}$ /ATS	4.9
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 59   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	594
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	333
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	3.9
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	32.7
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	592
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	332
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	40.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	20.7
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	61.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.19
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	148
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	531
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15}$ /ATS	4.5
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 59   From/To South of -40   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	614
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	332
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	3.8
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	32.6
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	612
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	330
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	41.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	20.2
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	61.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.19
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	153
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	549
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	4.7
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 10

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 222   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.990
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1667
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	1084
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\text {LS }^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	1.4
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	26.8
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.0
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1650
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	1073
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	76.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	6.6
Percent time-spent-following, PTSF(\%)=BPTSF+f ${ }_{\text {d/np }}$	83.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	D
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.52
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	413
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	1485
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	15.4
Notes	
1. If $\mathrm{Vp}>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$H C S+{ }^{\text {TM }}$ Version $5.4 \quad$ Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 222   From/To I-40 to Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.912
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	820
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	418
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	3.0
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	31.9
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.954
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	784
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	400
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	49.8
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	15.7
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	65.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.26
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	187
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	673
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	5.9
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 222   From/To South of Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	524
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	293
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\text {LS }^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	4.1
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	33.0
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	515
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	288
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	36.4
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	21.7
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	58.1
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.16
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	128
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	462
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.9
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .   2. If highest directional split $\mathrm{Vp}>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 222   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.990
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1489
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	893
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	1.6
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	28.0
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.0
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1474
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	884
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	72.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	7.6
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	80.3
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	D
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.47
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	369
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	1327
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	13.2
Notes	
1. If $\mathrm{Vp}>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 222   From/To I-40 to Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.912
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	812
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	463
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	3.0
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	31.9
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.954
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	777
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	443
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	49.5
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	15.4
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	64.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.25
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	185
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	667
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	5.8
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 222   From/To South of Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	454
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	291
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	4.3
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	33.3
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	446
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	285
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	32.4
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	22.2
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	54.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	$B$
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.14
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	111
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	400
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	3.3
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 222   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.1
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.990
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1687
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	1080
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ veh/h   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width        , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}($ Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}^{-\mathrm{f}_{\mathrm{A}}}$ ) $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	1.4
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	26.7
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1670
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	1069
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	77.0
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	6.4
Percent time-spent-following, PTSF(\%)=BPTSF +f d/np	83.4
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	D
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.53
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	418
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	1503
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	15.7
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	HCS+ ${ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 222   From/To I-40 to Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.912
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	963
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	501
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	2.7
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	31.1
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.954
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	921
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	479
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	55.5
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	13.7
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	69.2
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.30
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	220
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	791
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	7.1
Notes	
1. If $\mathrm{Vp}>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway SR 222   From/To South of Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right.$ )	0.994
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	608
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	353
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width ${ }^{3}$, $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}($ Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}} \mathrm{ff}_{\mathrm{A}}\right)$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}$ ( mi/h) (Exhibit 20-11)	3.9
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}$ - $\mathrm{f}_{\mathrm{np}}$	32.6
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	606
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	351
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	41.3
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)$ (Exh. 20-12)	20.5
Percent time-spent-following, PTSF(\%)=BPTSF +f d/np	61.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.19
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}($ veh $-m i)=0.25 \mathrm{~L}_{\mathrm{t}}(\mathrm{V} / \mathrm{PHF})$	151
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V} * \mathrm{~L}_{\mathrm{t}}$	544
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	4.6
Notes	
1. If $\mathrm{Vp}>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	HCS $+^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11:13

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 222   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.990
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1507
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	919
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, BFFS ${ }_{\text {FM }}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width ${ }^{3}$, $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS-f $\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}$ ) $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}$ ( mi/h) (Exhibit 20-11)	1.6
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}$ - $\mathrm{f}_{\mathrm{np}}$	27.9
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.0
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	1.000
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	1492
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	910
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	73.1
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)$ (Exh. 20-12)	7.5
Percent time-spent-following, PTSF(\%)=BPTSF+f ${ }_{\text {d/np }}$	80.6
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	D
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.47
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}($ veh $-m i)=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	373
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	1343
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	13.4
Notes	
1. If $\mathrm{Vp}>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F . 2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	HCS $+^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11:13

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 222   From/To I-40 to Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.912
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	992
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	526
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	2.6
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	30.9
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.954
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	949
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	503
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	56.6
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	13.3
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	69.9
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.31
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	226
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	815
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	7.3
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period PM Peak Hour	Highway SR 222   From/To South of Pilot Dwy.   Jurisdiction Fayette County   Analysis Year 2034
Project Description: Existing Conditions (No Build)	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.979
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	567
$\mathrm{v}_{\mathrm{p}}{ }^{\text {* }}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	357
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width            , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}} \text { ) }}$ $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	4.0
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}-\mathrm{f}_{\mathrm{np}}$	32.8
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.997
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	557
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	351
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	38.7
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)(E x h .20-12)$	21.1
Percent time-spent-following, PTSF(\%)=BPTSF $+\mathrm{f}_{\mathrm{d} / \mathrm{np}}$	59.8
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	C
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.18
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	139
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	500
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	4.2
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}^{+}{ }^{\text {TM }}$ Version 5.4 Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET

General Information	Site Information
Analyst SKB   Agency or Company TDOT/TranSystems   Date Performed $04 / 18 / 2011$   Analysis Time Period AM Peak Hour	Highway Dancyville Road   From/To North of I-40   Jurisdiction Fayette County   Analysis Year 2014
Project Description: Existing Conditions	
Input Data	
Average Travel Speed	
Grade adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-7)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-9)	1.7
Passenger-car equivalents for RV s, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-9)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.986
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF} * \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	224
$\mathrm{v}_{\mathrm{p}}$ * highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	125
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Field Measured speed, $\mathrm{S}_{\mathrm{FM}}$ $\mathrm{mi} / \mathrm{h}$   Observed volume, $\mathrm{V}_{\mathrm{f}}$ $\mathrm{veh} / \mathrm{h}$   Free-flow speed, FFS FFS $=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{f}_{\mathrm{HV}}\right)$ $\mathrm{mi} / \mathrm{h}$	Base free-flow speed, $\mathrm{BFFS}_{\mathrm{FM}}$ $45.0 \mathrm{mi} / \mathrm{h}$   Adj. for lane width and shoulder width        , $\mathrm{f}_{\mathrm{LS}}$ (Exhibit 20-5) $1.3 \mathrm{mi} / \mathrm{h}$   Adj. for access points, $\mathrm{f}_{\mathrm{A}}$ (Exhibit 20-6) $2.5 \mathrm{mi} / \mathrm{h}$   Free-flow speed, FFS (FSS=BFFS- $\mathrm{f}_{\mathrm{LS}^{-f} \mathrm{f}}$ ) $41.2 \mathrm{mi} / \mathrm{h}$
Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}}(\mathrm{mi} / \mathrm{h})$ (Exhibit 20-11)	3.6
Average travel speed, ATS ( mi/h) ATS $=$ FFS $-0.00776 \mathrm{v}_{\mathrm{p}}$ - $\mathrm{f}_{\mathrm{np}}$	35.8
Percent Time-Spent-Following	
Grade Adjustment factor, $\mathrm{f}_{\mathrm{G}}$ (Exhibit 20-8)	1.00
Passenger-car equivalents for trucks, $\mathrm{E}_{\mathrm{T}}$ (Exhibit 20-10)	1.1
Passenger-car equivalents for RVs, $\mathrm{E}_{\mathrm{R}}$ (Exhibit 20-10)	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.998
Two-way flow rate ${ }^{1}, \mathrm{v}_{\mathrm{p}}(\mathrm{pc} / \mathrm{h})=\mathrm{V} /\left(\mathrm{PHF}{ }^{*} \mathrm{f}_{\mathrm{G}}{ }^{*} \mathrm{f}_{\mathrm{HV}}\right)$	222
$\mathrm{v}_{\mathrm{p}}{ }^{*}$ highest directional split proportion ${ }^{2}(\mathrm{pc} / \mathrm{h})$	124
Base percent time-spent-following, BPTSF(\%)=100(1-e $\mathrm{e}^{-0.000879 v_{p} \text { ) }}$	17.7
Adj. for directional distribution and no-passing zone, $\mathrm{f}_{\mathrm{d} / \mathrm{hp}}(\%)$ (Exh. 20-12)	23.0
Percent time-spent-following, PTSF(\%)=BPTSF+f ${ }_{\text {d/np }}$	40.7
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 20-3 for Class I or 20-4 for Class II)	B
Volume to capacity ratio, $\mathrm{v} / \mathrm{c}=\mathrm{V}_{\mathrm{p}} / 3,200$	0.07
Peak 15-min veh-miles of travel, $\mathrm{VMT}_{15}$ (veh-mi) $=0.25 \mathrm{~L}_{\mathrm{t}}$ (V/PHF)	55
Peak-hour vehicle-miles of travel, $\mathrm{VMT}_{60}($ veh- $m i)=\mathrm{V}^{*} \mathrm{~L}_{\mathrm{t}}$	199
Peak 15-min total travel time, $\mathrm{TT}_{15}\left(\right.$ veh-h) $=\mathrm{VMT}_{15} / \mathrm{ATS}$	1.5
Notes	
1. If $V p>=3,200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is $F$.   2. If highest directional split $V p>=1,700 \mathrm{pc} / \mathrm{h}$, terminated anlysis-the LOS is F .	
Copyright © 2008 University of Florida, All Rights Reserved	$\mathrm{HCS}+^{\text {TM }}$ Version $5.4 \quad$ Generated: 4/20/2011 11

TWO-WAY TWO-LANE HIGHWAY SEGMENT WORKSHEET


## Multilane Segments

## Highway Capacity Software Computer Printouts


























## Unsignalized Intersections

## Highway Capacity Software Computer Printouts

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	$S K B$	
Agency/Co.	TDOT/TranSystems	
Date Performed	$04 / 18 / 2011$	
Analysis Time Period	AM Peak Period	
Proime\|		

Site Information

Intersection	SR 59 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
North/South Street: SR 59
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		154	101	100	68	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	171	112	111	75	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	90		94			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	100	0	104	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$					$L R$	
v (veh/h)		111					204	
C (m) (veh/h)		1274					638	
v/c		0.09					0.32	
$95 \%$ queue length		0.29					1.38	
Control Delay (s/veh)		8.1					13.3	
LOS		$A$				$B$		
Approach Delay (s/veh)	--	--				13.3		
Approach LOS	--					$B$		

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	$S K B$	
Agency/Co.	TDOT/TranSystems	
Date Performed	$04 / 18 / 2011$	
Analysis Time Period	PM Peak Period	
Proime\|		

Site Information

Intersection	SR 59 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
North/South Street: SR 59
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		100	79	77	97	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	111	87	85	107	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	117		122			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	130	0	135	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$					$L R$	
v (veh/h)		85					265	
C (m) (veh/h)		1369					693	
v/c		0.06					0.38	
$95 \%$ queue length		0.20					1.80	
Control Delay (s/veh)		7.8					13.4	
LOS		$A$				$B$		
Approach Delay (s/veh)	--	--				13.4		
Approach LOS	--					$B$		

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period

Site Information

Intersection	SR 59 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

Project Description Existing Conditions

East/West Street: I-40 EB Ramps	North/South Street: SR 59
Intersection Orientation: North-South	Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	140	104			104	134
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	155	115	0	0	115	148
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				64		62
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	71	0	68
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	155			139				
C (m) (veh/h)	1295			555				
v/c	0.12			0.25				
$95 \%$ queue length	0.41			0.98				
Control Delay (s/veh)	8.2			13.6				
LOS	$A$			$B$				
Approach Delay (s/veh)	--	--		13.6				
Approach LOS	--	--	$B$					

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	PM Peak Period

Site Information

Intersection	SR 59 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

Project Description Existing Conditions

East/West Street: I-40 EB Ramps	North/South Street: SR 59
Intersection Orientation: North-South	Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	91	126			82	86
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	101	140	0	0	91	95
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				92		90
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	102	0	100
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	101			202				
C (m) (veh/h)	1382			645				
v/c	0.07			0.31				
$95 \%$ queue length	0.24			1.34				
Control Delay (s/veh)	7.8			13.1				
LOS	$A$			$B$				
Approach Delay (s/veh)	--	--		13.1				
Approach LOS	--	--						

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period

Site Information

Intersection	SR 59 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
North/South Street: SR 59
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		229	119	118	87	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	254	132	131	96	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	134		140			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	148	0	155	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$					$L R$	
v (veh/h)		131					303	
C (m) (veh/h)		1167					538	
v/c		0.11					0.56	
$95 \%$ queue length		0.38					3.46	
Control Delay (s/veh)		8.5					20.0	
LOS	A					$C$		
Approach Delay (s/veh)	--	--				20.0		
Approach LOS	--	--			$C$			

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	PM Peak Period

Site Information

Intersection	SR 59 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
North/South Street: SR 59
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		149	103	101	116	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	165	114	112	128	0
Percent Heavy Vehicles	0	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	174		181			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	193	0	201	0	0	0
Percent Heavy Vehicles	3	0	3	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound		Eastbound			
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$					$L R$	
v (veh/h)		112					394	
C (m) (veh/h)		1278					597	
v/c		0.09					0.66	
$95 \%$ queue length		0.29					4.88	
Control Delay (s/veh)		8.1					22.0	
LOS						$C$		
Approach Delay (s/veh)	--	--				22.0		
Approach LOS	--					$C$		

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period

Site Information

Intersection	SR 59 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

Project Description Existing Conditions

East/West Street: I-40 EB Ramps	North/South Street: SR 59
Intersection Orientation: North-South	Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	209	154			124	199
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	232	171	0	0	137	221
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				81		78
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	90	0	86
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	232			176				
C (m) (veh/h)	1195			388				
v/c	0.19			0.45				
$95 \%$ queue length	0.72			2.29				
Control Delay (s/veh)	8.7			21.8				
LOS	A			$C$				
Approach Delay (s/veh)	--	--						
Approach LOS	--	--						

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	PM Peak Period

Site Information

Intersection	SR 59 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

Project Description Existing Conditions

East/West Street: I-40 EB Ramps	North/South Street: SR 59
Intersection Orientation: North-South	Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	135	188			108	128
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	150	208	0	0	120	142
Percent Heavy Vehicles	3	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				109		107
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	121	0	118
Percent Heavy Vehicles	3	0	3	3	0	3
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	150			239				
C (m) (veh/h)	1296			498				
v/c	0.12			0.48				
$95 \%$ queue length	0.39			2.57				
Control Delay (s/veh)	8.1			18.7				
LOS	A			$C$				
Approach Delay (s/veh)	--	--		18.7				
Approach LOS	--	--	$C$					

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|ggency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: Pilot Dwy.	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ Pilot Dwy.
Jurisdiction	Fayette County
Analysis Year	2014

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		196	9	90	252	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	217	10	100	280	0
Percent Heavy Vehicles	0	--	--	25	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				5		135
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	5	0	150
Percent Heavy Vehicles	3	0	3	25	0	25
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT		LR				
v (veh/h)		100		155				
C (m) (veh/h)		1217		734				
v/c		0.08		0.21				
95\% queue length		0.27		0.79				
Control Delay (s/veh)		8.2		11.2				
LOS		A		B				
Approach Delay (s/veh)	--	--		11.2				
Approach LOS	--	--		B				

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|ggency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	PM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: Pilot Dwy.	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ Pilot Dwy.
Jurisdiction	Fayette County
Analysis Year	2014

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		255	11	153	132	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	283	12	170	146	0
Percent Heavy Vehicles	0	--	--	25	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				2		127
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	2	0	141
Percent Heavy Vehicles	3	0	3	25	0	25
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$		$L R$				
v (veh/h)		170		143				
C (m) (veh/h)		1146		685				
v/c		0.15		0.21				
$95 \%$ queue length		0.52		0.78				
Control Delay (s/veh)		8.7		11.6				
LOS		$A$		$B$				
Approach Delay (s/veh)	--	--	11.6					
Approach LOS	--	--	$B$					

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|ngency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: I-40 EB Ramps	
Intersection Orientation: North-South	


Intersection	SR 222 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

North/South Street: SR 222

Study Period (hrs): 0.25
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		217	114	118	208	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	241	126	131	231	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	581		134			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	645	0	148	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		$L R$				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT					LR	
v (veh/h)		131					793	
C (m) (veh/h)		1149					344	
v/c		0.11					2.31	
95\% queue length		0.38					61.00	
Control Delay (s/veh)		8.5					620.8	
LOS		A					$F$	
Approach Delay (s/veh)	--	--					620.8	
Approach LOS	--	--					$F$	

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|ngency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	PM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: I-40 EB Ramps	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		240	142	225	159	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	266	157	250	176	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	271		126			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	301	0	140	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		$L R$				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$					$L R$	
v (veh/h)		250					441	
C (m) (veh/h)		1095					257	
v/c		0.23					1.72	
$95 \%$ queue length		0.88					28.75	
Control Delay (s/veh)		9.3					371.8	
LOS	A					$F$		
Approach Delay (s/veh)	--	--				371.8		
Approach LOS	--	--				$F$		

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|ngency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: I-40 EB Ramps	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	83	715			209	304
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	92	794	0	0	232	337
Percent Heavy Vehicles	25	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				117		257
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	130	0	285
Percent Heavy Vehicles	3	0	3	25	0	10
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT			LR				
v (veh/h)	92			415				
C (m) (veh/h)	899			233				
v/c	0.10			1.78				
95\% queue length	0.34			28.26				
Control Delay (s/veh)	9.5			404.2				
LOS	A			$F$				
Approach Delay (s/veh)	--	--		404.2				
Approach LOS	--	--		$F$				

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	PM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: I-40 EB Ramps	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2014

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	106	405			286	514
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	117	450	0	0	317	571
Percent Heavy Vehicles	25	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				98		122
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	108	0	135
Percent Heavy Vehicles	3	0	3	25	0	10
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	117			243				
C (m) (veh/h)	675			236				
v/c	0.17			1.03				
$95 \%$ queue length	0.62			9.99				
Control Delay (s/veh)	11.4			111.3				
LOS	$B$			$F$				
Approach Delay (s/veh)	--	--		111.3				
Approach LOS	--	--	$F$					

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|ggency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: Pilot Dwy.	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ Pilot Dwy.
Jurisdiction	Fayette County
Analysis Year	2034

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		218	11	105	309	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	242	12	116	343	0
Percent Heavy Vehicles	0	--	--	25	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				6		159
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	6	0	176
Percent Heavy Vehicles	3	0	3	25	0	25
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT		LR				
v (veh/h)		116		182				
C (m) (veh/h)		1188		701				
v/c		0.10		0.26				
95\% queue length		0.32		1.04				
Control Delay (s/veh)		8.4		11.9				
LOS		A		B				
Approach Delay (s/veh)	--	--		11.9				
Approach LOS	--	--		B				

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|ggency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	PM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: Pilot Dwy.	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ Pilot Dwy.
Jurisdiction	Fayette County
Analysis Year	2034

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		284	13	200	181	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	315	14	222	201	0
Percent Heavy Vehicles	0	--	--	25	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				3		150
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	3	0	166
Percent Heavy Vehicles	3	0	3	25	0	25
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT		LR				
v (veh/h)		222		169				
C (m) (veh/h)		1112		643				
v/c		0.20		0.26				
95\% queue length		0.74		1.05				
Control Delay (s/veh)		9.0		12.6				
LOS		A		B				
Approach Delay (s/veh)	--	--		12.6				
Approach LOS	--	--		B				

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	AM Peak Period

Site Information

Intersection	SR 222 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

Project Description Existing Conditions (No Build)
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		222	155	120	246	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	246	172	133	273	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	586		168			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
$\qquad$ (veh/h)	651	0	186	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

| Approach | Northbound | Southbound | Westbound |  |  | Eastbound |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | 1 | 4 | 7 | 8 | 9 | 10 | 11 | 12 |
| Lane Configuration |  | $L T$ |  |  |  |  | $L R$ |  |
| v (veh/h) |  | 133 |  |  |  |  | 837 |  |
| C (m) (veh/h) |  | 1099 |  |  |  |  | 316 |  |
| v/c |  | 0.12 |  |  |  |  | 2.65 |  |
| $95 \%$ queue length |  | 0.41 |  |  |  |  | 69.63 |  |
| Control Delay (s/veh) |  | 8.7 |  |  |  |  | 776.2 |  |
| LOS |  | $A$ |  |  |  | $F$ |  |  |
| Approach Delay (s/veh) | -- | -- |  |  |  | 776.2 |  |  |
| Approach LOS | -- | -- |  |  |  | $F$ |  |  |

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
\|Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	PM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: I-40 EB Ramps	
Intersection Orientation: North-South	

Site Information

Intersection	SR 222 @ I-40 EB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		250	184	226	208	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	277	204	251	231	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	276		173			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	306	0	192	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		$L R$				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		$L T$					$L R$	
v (veh/h)		251					498	
C (m) (veh/h)		1041					241	
v/c		0.24					2.07	
$95 \%$ queue length		0.94					37.15	
Control Delay (s/veh)		9.6					527.2	
LOS	A					$F$		
Approach Delay (s/veh)	--	--				527.2		
Approach LOS	--	--				$F$		

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	AM Peak Period
Project Description Existing Conditions (No Build)	
East/West Street: I-40 EB Ramps	
Intersection Orientation: North-South	


Intersection	SR 222 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

North/South Street: SR 222

Study Period (hrs): 0.25
Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	110	698			232	324
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	122	775	0	0	257	360
Percent Heavy Vehicles	25	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				143		258
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	158	0	286
Percent Heavy Vehicles	3	0	3	25	0	10
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

## Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	122			444				
C (m) (veh/h)	861			203				
v/c	0.14			2.19				
$95 \%$ queue length	0.49			34.90				
Control Delay (s/veh)	9.9			587.9				
LOS	$A$			$F$				
Approach Delay (s/veh)	--	--		587.9				
Approach LOS	--	--		$F$				

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	$04 / 18 / 2011$
Analysis Time Period	PM Peak Period

Site Information

Intersection	SR 222 @ I-40 WB Ramps
Jurisdiction	Fayette County
Analysis Year	2034

Project Description Existing Conditions (No Build)
East/West Street: I-40 EB Ramps
North/South Street: SR 222
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	130	396			302	520
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	144	440	0	0	335	577
Percent Heavy Vehicles	25	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				132		125
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	146	0	138
Percent Heavy Vehicles	3	0	3	25	0	10
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	LT			LR				
v (veh/h)	144			284				
C (m) (veh/h)	660			191				
v/c	0.22			1.49				
95\% queue length	0.83			17.66				
Control Delay (s/veh)	12.0			290.3				
LOS	B			$F$				
Approach Delay (s/veh)	--	--		290.3				
Approach LOS	--	--		$F$				

## TWO-WAY STOP CONTROL SUMMARY

General Information
Site Information

Analyst	SKB	Intersection	SR 222 @ I-40 EB Ramps
Agency/Co.	TDOT/TranSystems	Jurisdiction	Fayette County
Date Performed	04/18/2011		2014
Analysis Year			
Project Description Traditional Diamond + SE Loop Ramp			
East/West Street: I-40 EB Ramps	AM Peak Period	North/South Street: SR 222	
Intersection Orientation: North-South	Study Period (hrs): 0.25		

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		217	114	118	208	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	241	126	131	231	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	2	0	0	2	0
Configuration		T	TR	LT	$T$	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)			134			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	148	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	1	0	0	0
Configuration			$R$			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT						$R$
v (veh/h)		131						148
C (m) (veh/h)		1133						865
v/c		0.12						0.17
95\% queue length		0.39						0.62
Control Delay (s/veh)		8.6						10.0
LOS		A						B
Approach Delay (s/veh)	--	--					0.0	
Approach LOS	--	--					B	

## TWO-WAY STOP CONTROL SUMMARY

General Information
Site Information

Analyst	SKB	Intersection	SR 222 @ I-40 EB Ramps
Agency/Co.	TDOT/TranSystems	Jurisdiction	Fayette County
Date Performed	04/18/2011	Analysis Year	2014
Analysis Time Period	PM Peak Period		
Project Description Traditional Diamond + SE Loop Ramp			
East/West Street: I-40 EB Ramps		North/South Street:	
Intersection Orientation	rth-South	Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		240	142	225	159	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	266	157	250	176	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	2	0	0	2	0
Configuration		T	TR	LT	$T$	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)			126			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	140	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	1	0	0	0
Configuration			$R$			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT						$R$
v (veh/h)		250						140
C (m) (veh/h)		1078						899
v/c		0.23						0.16
95\% queue length		0.90						0.55
Control Delay (s/veh)		9.3						9.7
LOS		A						A
Approach Delay (s/veh)	--	--					9.7	
Approach LOS	--	--					A	

## TWO-WAY STOP CONTROL SUMMARY

General Information
Site Information

Analyst	SKB	Intersection	SR 222 @ I-40 EB Ramps
Agency/Co.	TDOT/TranSystems	Jurisdiction	Fayette County
Date Performed	04/18/2011		2034
Analysis Year			
Pnalysis Time Period	AM Peak Period		
Project Description Traditional Diamond + SE Loop Ramp			
East/West Street: I-40 EB Ramps	North/South Street: $\quad$ SR 222		
Intersection Orientation: North-South	Study Period (hrs): 0.25		

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		222	155	120	246	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	246	172	133	273	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	2	0	0	2	0
Configuration		T	TR	LT	$T$	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)			168			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	186	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	1	0	0	0
Configuration			$R$			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT						$R$
$v$ (veh/h)		133						186
C (m) (veh/h)		1083						841
v/c		0.12						0.22
95\% queue length		0.42						0.84
Control Delay (s/veh)		8.8						10.5
LOS		A						B
Approach Delay (s/veh)	--	--					0.5	
Approach LOS	--	--					$B$	

## TWO-WAY STOP CONTROL SUMMARY

General Information
Site Information

Analyst	SKB	Intersection	SR 222 @ I-40 EB Ramps
Agency/Co.	TDOT/TranSystems	Jurisdiction	Fayette County
Date Performed	04/18/2011	Analysis Year	2034
Analysis Time Period	PM Peak Period		
Project Description Traditional Diamond + SE Loop Ramp			
East/West Street: I-40 EB Ramps		North/South Street:	
Intersection Orientation	rth-South	Study Period (hrs):	

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		250	184	226	208	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	277	204	251	231	0
Percent Heavy Vehicles	0	--	--	10	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	2	0	0	2	0
Configuration		T	TR	LT	$T$	
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)			173			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	192	0	0	0
Percent Heavy Vehicles	10	0	25	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		$N$			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	1	0	0	0
Configuration			$R$			

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT						$R$
v (veh/h)		251						192
C (m) (veh/h)		1023						865
v/c		0.25						0.22
95\% queue length		0.97						0.85
Control Delay (s/veh)		9.7						10.3
LOS		A						B
Approach Delay (s/veh)	--	--					0.3	
Approach LOS	--	--					B	

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	AM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	Dancyville Rd @ I-40 EB   Ramps
Jurisdiction	Haywood County
Analysis Year	2014

North/South Street: Dancyville Road
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		121	14	15	21	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	134	15	16	23	0
Percent Heavy Vehicles	0	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	$L T$		
Upstream Signal		0			0	


Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	52		50			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	57	0	55	0	0	0
Percent Heavy Vehicles	2	0	2	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT					LR	
v (veh/h)		16					112	
C (m) (veh/h)		1432					896	
v/c		0.01					0.13	
95\% queue length		0.03					0.43	
Control Delay (s/veh)		7.5					9.6	
LOS		A					A	
Approach Delay (s/veh)	--	--					9.6	
Approach LOS	--	--					A	

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	PM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	R
Jurisdiction	H
Analysis Year	2

Dancyville Rd @ I-40 EB Ramps
Haywood County
2014

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		68	15	24	34	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	75	16	26	37	0
Percent Heavy Vehicles	0	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	$L T$		
Upstream Signal		0			0	


Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	72		95			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	80	0	105	0	0	0
Percent Heavy Vehicles	2	0	2	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT					LR	
v (veh/h)		26					185	
C (m) (veh/h)		1504					921	
v/c		0.02					0.20	
95\% queue length		0.05					0.75	
Control Delay (s/veh)		7.4					9.9	
LOS		A					A	
Approach Delay (s/veh)	--	--					9.9	
Approach LOS	--	--					A	

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	AM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	R
Jurisdiction	H
Analysis Year	2

Dancyville Rd @ I-40 WB Ramps
Haywood County
2014

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	104	69			16	95
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	115	76	0	0	17	105
Percent Heavy Vehicles	2	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	


Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				20		19
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	22	0	21
Percent Heavy Vehicles	3	0	3	2	0	2
Percent Grade (\%)		0			0	
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	115			43				
$\mathrm{C}(\mathrm{m})(\mathrm{veh} / \mathrm{h})$	1465			723				
v/c	0.08			0.06				
$5 \%$ queue length	0.26			0.19				
Control Delay (s/veh)	7.7			10.3				
LOS	$A$			$B$				
Approach Delay (s/veh)	--	--	10.3					
Approach LOS	--	--	$B$					

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	PM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	Dancyville Rd @ I-40 WB   Ramps
Jurisdiction	Haywood County
Analysis Year	2014

North/South Street: Dancyville Road
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	63	79			33	41
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	70	87	0	0	36	45
Percent Heavy Vehicles	2	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	


Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				25		16
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	27	0	17
Percent Heavy Vehicles	3	0	3	2	0	2
Percent Grade (\%)		0			0	
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	70			44				
$\mathrm{C}(\mathrm{m})(\mathrm{veh} / \mathrm{h})$	1517			763				
v/c	0.05			0.06				
$5 \%$ queue length	0.15			0.18				
Control Delay (s/veh)	7.5			10.0				
LOS	$A$			$B$				
Approach Delay (s/veh)	--	--	10.0					
Approach LOS	--	--	$B$					

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	AM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	R
Jurisdiction	H
Analysis Year	2

Dancyville Rd @ I-40 EB Ramps
Haywood County
2034

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		149	21	22	32	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	165	23	24	35	0
Percent Heavy Vehicles	0	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	$L T$		
Upstream Signal		0			0	


Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	63		61			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	70	0	67	0	0	0
Percent Heavy Vehicles	2	0	2	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT					LR	
v (veh/h)		24					137	
C (m) (veh/h)		1386					845	
v/c		0.02					0.16	
95\% queue length		0.05					0.58	
Control Delay (s/veh)		7.6					10.1	
LOS		A					B	
Approach Delay (s/veh)	--	--					10.1	
Approach LOS	--	--					B	

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	PM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	R
Jurisdiction	H
Analysis Year	2

Dancyville Rd @ I-40 EB Ramps
Haywood County
2034

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)		87	22	36	50	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	96	24	40	55	0
Percent Heavy Vehicles	0	--	--	2	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration			TR	LT		
Upstream Signal		0			0	
Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)	83		114			
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	92	0	126	0	0	0
Percent Heavy Vehicles	2	0	2	0	0	0
Percent Grade (\%)	0			0		
Flared Approach		N			$N$	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration		LR				

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration		LT					LR	
v (veh/h)		40					218	
C (m) (veh/h)		1468					867	
v/c		0.03					0.25	
95\% queue length		0.08					1.00	
Control Delay (s/veh)		7.5					10.5	
LOS		A					B	
Approach Delay (s/veh)	--	--					10.5	
Approach LOS	--	--					B	

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	AM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	R
Jurisdiction	H
Analysis Year	2

Dancyville Rd @ I-40 WB Ramps
Haywood County
2034

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	124	88			24	110
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	137	97	0	0	26	122
Percent Heavy Vehicles	2	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	


Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				30		28
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	33	0	31
Percent Heavy Vehicles	3	0	3	2	0	2
Percent Grade (\%)		0			0	
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	137			64				
$\mathrm{C}(\mathrm{m})(\mathrm{veh} / \mathrm{h})$	1434			657				
v/c	0.10			0.10				
$5 \%$ queue length	0.32			0.32				
Control Delay (s/veh)	7.8			11.1				
LOS	$A$			$B$				
Approach Delay (s/veh)	--	--	11.1					
Approach LOS	--	--	$B$					

## TWO-WAY STOP CONTROL SUMMARY

General Information

Analyst	SKB
Agency/Co.	TDOT/TranSystems
Date Performed	O4/18/2011
Analysis Time Period	PM Peak Period

Project Description Existing Conditions
East/West Street: I-40 EB Ramps
Intersection Orientation: North-South

Site Information

Intersection	Dancyville Rd @ I-40 WB   Ramps
Jurisdiction	Haywood County
Analysis Year	2034

North/South Street: Dancyville Road
Study Period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street	Northbound			Southbound		
Movement	1	2	3	4	5	6
	L	T	R	L	T	R
Volume (veh/h)	80	90			49	47
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	88	100	0	0	54	52
Percent Heavy Vehicles	2	--	--	3	--	--
Median Type	Undivided					
RT Channelized			0			0
Lanes	0	1	0	0	1	0
Configuration	LT					TR
Upstream Signal		0			0	


Minor Street	Eastbound			Westbound		
Movement	7	8	9	10	11	12
	L	T	R	L	T	R
Volume (veh/h)				37		24
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90
Hourly Flow Rate, HFR (veh/h)	0	0	0	41	0	26
Percent Heavy Vehicles	3	0	3	2	0	2
Percent Grade (\%)	0			0		
Flared Approach		N			N	
Storage		0			0	
RT Channelized			0			0
Lanes	0	0	0	0	0	0
Configuration					LR	

Delay, Queue Length, and Level of Service

Approach	Northbound	Southbound	Westbound			Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Configuration	$L T$			$L R$				
v (veh/h)	88			67				
$\mathrm{C}(\mathrm{m})(\mathrm{veh} / \mathrm{h})$	1485			705				
v/c	0.06			0.10				
$5 \%$ queue length	0.19			0.31				
Control Delay (s/veh)	7.6			10.6				
LOS	$A$			$B$				
Approach Delay (s/veh)	--	--	10.6					
Approach LOS	--	--	$B$					

## Signalized Intersections

Highway Capacity Software Computer Printouts

## SHORT REPORT

SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Time Period   AM Peak Period						Intersection Area Type Jurisdiction Analysis Year		SR 222 @ I-40 EB Ramps   All other areas   Fayette County   2014					
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2		1					2	1	1	2	
Lane Group		L		$R$					T	$R$	L	T	
Volume (vph)		581		134					217	114	118	208	
\% Heavy Vehicles		10		48					48	48	10	10	
PHF		0.90		0.90					0.90	0.90	0.90	0.90	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	$N$	$N$	0	$N$	$N$	0	N	$N$	0	$N$
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02		03			SB On		NS Pe		07		
Timing	$\mathrm{G}=25.0$ G   Y		G =		G =		G $=8.0$		$\mathrm{G}=23$			G =	
	$\mathrm{Y}=5$ Y		$Y=$		$Y=$		$Y=4$		$\mathrm{Y}=5$	Y		Y =	
Duration of Analysis (hrs) $=0.25$									Cycle L	ngth C	70.0		

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$		$R$					$T$	$R$	$L$	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	646		149					241	127	131	231	
Satflow/Lane	1641		1091					1283	1091	1071	1727	
Capacity/Lane Group	1138		390					803	358	551	1645	
Flow Ratio	0.2		0.1					0.1	0.1	0.1	0.1	
v/c Ratio	0.57		0.38					0.30	0.35	0.24	0.14	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	5.2		2.2					1.8	1.9	1.3	1.3	
kB	0.4		0.3					0.4	0.3	0.4	0.5	
Q2	0.6		0.2					0.2	0.2	0.1	0.1	
Q Average	5.8		2.4					2.0	2.1	1.4	1.4	

Percentile Back of Queue (95th percentile)

fв\%	1.9		2.0					2.0	2.0	2.1	2.1	
Back of Queue	11.2		4.8					4.0	4.2	2.9	2.8	

## Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date O4/18/2011   Performed    Time Period PM Peak Period						Intersection Area Type Jurisdiction Analysis Year			SR 222 @ I-40 EB Ramps   All other areas   Fayette County 2014				
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2		1					2	1	1	2	
Lane Group		L		$R$					T	$R$	L	T	
Volume (vph)		271		126					240	142	225	159	
\% Heavy Vehicles		10		48					48	48	10	10	
PHF		0.90		0.90					0.90	0.90	0.90	0.90	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	$N$	0	$N$	$N$	0	N	N	0	$N$
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02		03			SB On		NS Pe		07		
Timing	G $=23.0 \quad \mathrm{G}$		G =		G =		G = 8.0		G = 25			G =	
	$Y=5$ $Y$		Y =		$\mathrm{Y}=$		$Y=4$		Y = 5			Y =	
Duration of Analysis (hrs) $=0.25$									Cycle L	ngth C	70.0		

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$		$R$					$T$	$R$	$L$	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	301		140					267	158	250	177	
Satflow/Lane	1641		1091					1283	1091	1045	1727	
Capacity/Lane Group	1047		358					873	390	568	1738	
Flow Ratio	0.1		0.1					0.1	0.1	0.2	0.1	
v/c Ratio	0.29		0.39					0.31	0.41	0.44	0.10	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	2.2		2.1					2.0	2.3	2.3	0.9	
kB	0.4		0.3					0.4	0.3	0.4	0.6	
Q2	0.2		0.2					0.2	0.2	0.3	0.1	
Q Average	2.4		2.3					2.1	2.5	2.7	1.0	

Percentile Back of Queue (95th percentile)

fв\%	2.0		2.0					2.0	2.0	2.0	2.1	
Back of Queue	4.8		4.7					4.3	5.1	5.4	2.0	

## Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

## SHORT REPORT



## Lane Group Capacity, Control Delay, and LOS Determination



## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				$L$		$R$	$L$	T			T	$R$
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				130		286	92	794			232	338
Satflow/Lane				1220		1468	806	1283			1727	1468
Capacity/Lane Group				401		482	437	1292			1175	524
Flow Ratio				0.1		0.2	0.1	0.3			0.1	0.2
v/c Ratio				0.32		0.59	0.21	0.61			0.20	0.65
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				1.9		4.6	0.8	5.7			1.6	5.5
kB				0.3		0.4	0.4	0.5			0.4	0.4
Q2				0.2		0.5	0.1	0.7			0.1	0.7
Q Average				2.1		5.2	0.9	6.4			1.7	6.2
Percentile Back of Queue (95th percentile)												
fB\%				2.0		1.9	2.1	1.9			2.0	1.9
Back of Queue				4.2		10.1	1.9	12.3			3.5	11.9
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95\% Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT														
General Information							Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed    Time Period PM Peak Period							Intersection SR 222 @ I-40 WB Ramps   Area Type All other areas   Jurisdiction Fayette County   Analysis Year 2014							
Volume and Timing Input														
			EB			WB			NB			SB		
			LT	TH	RT									
Number of Lanes						1		1	1	2			2	1
Lane Group						L		$R$	L	$T$			$T$	R
Volume (vph)						98		122	106	405			286	514
\% Heavy Vehicles						48		10	48	48			10	10
PHF						0.90		0.90	0.90	0.90			0.90	0.90
Pretimed/Actuated (P/A)						A		A	A	A			A	A
Startup Lost Time						2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green						2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type						3		3	3	3			3	3
Unit Extension						3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume			0	0		0	0	0	0	0		0	0	0
Lane Width						12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking			$N$	0	$N$	N	0	N	N	0	$N$	$N$	0	N
Parking/Hour														
Bus Stops/Hour						0		0	0	0			0	0
Minimum Pedestrian Time				3.2			3.2			3.2			3.2	
Phasing	WB Only	02		03		04		NB Only		NS Perm	07		08	
Timing	$\mathrm{G}=15.0$	G =		G =		G =		G $=8.0$		G = 33.0	G =		G =	
	$\mathrm{Y}=5$	$\mathrm{Y}=$		$Y=$		$\mathrm{Y}=$		$\mathrm{Y}=4$		$\mathrm{Y}=5$	Y =		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$										Cycle Length C = 70.0				

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				$L$		$R$	$L$	$T$			T	$R$
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				109		136	118	450			318	571
Satflow/Lane				1220		1468	747	1283			1727	1468
Capacity/Lane Group				261		315	490	1571			1551	692
Flow Ratio				0.1		0.1	0.2	0.2			0.1	0.4
v/c Ratio				0.42		0.43	0.24	0.29			0.21	0.83
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				1.8		2.3	0.8	2.0			1.9	9.6
kB				0.3		0.3	0.4	0.5			0.5	0.5
Q2				0.2		0.2	0.1	0.2			0.1	2.0
Q Average				2.0		2.5	0.9	2.2			2.0	11.6
Percentile Back of Queue (95th percentile)												
fB\%				2.0		2.0	2.1	2.0			2.0	1.8
Back of Queue				4.1		5.1	1.9	4.5			4.1	21.0
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95\% Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Time Period   AM Peak Period						Intersection Area Type Jurisdiction Analysis Year		SR 222 @ I-40 EB Ramps   All other areas   Fayette County $2034$					
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2		1					2	1	1	2	
Lane Group		L		$R$					T	$R$	L	T	
Volume (vph)		586		168					222	155	120	246	
\% Heavy Vehicles		10		48					48	48	10	10	
PHF		0.90		0.90					0.90	0.90	0.90	0.90	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	$N$	$N$	0	$N$	$N$	0	N	N	0	$N$
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02		03			SB On		NS Pe		07		
Timing	$\mathrm{G}=25.0$   $\mathrm{Y}=5$		G =		G =		$\mathrm{G}=8.0$		$\mathrm{G}=23$			G =	
	$\mathrm{Y}=5$ Y		$Y=$		$\mathrm{Y}=$		$Y=4$		$\mathrm{Y}=5$	Y		Y =	
Duration of Analysis (hrs) $=0.25$									Cycle L	ngth C	70.0		

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$		$R$					$T$	$R$	$L$	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	651		187					247	172	133	273	
Satflow/Lane	1641		1091					1283	1091	1064	1727	
Capacity/Lane Group	1138		390					803	358	548	1645	
Flow Ratio	0.2		0.2					0.1	0.2	0.1	0.1	
v/c Ratio	0.57		0.48					0.31	0.48	0.24	0.17	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	5.3		2.8					1.9	2.7	1.3	1.5	
kB	0.4		0.3					0.4	0.3	0.4	0.5	
Q2	0.6		0.3					0.2	0.3	0.1	0.1	
Q Average	5.8		3.1					2.0	3.0	1.4	1.6	

Percentile Back of Queue (95th percentile)

fв\%	1.9		2.0					2.0	2.0	2.1	2.0	
Back of Queue	11.3		6.3					4.1	5.9	2.9	3.3	

## Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date P4/18/2011   Performed 04/   Time Period PM Peak Period						Intersection Area Type Jurisdiction Analysis Year		SR 222 @ I-40 EB Ramps   All other areas   Fayette County   2034					
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2		1					2	1	1	2	
Lane Group		L		$R$					T	$R$	L	T	
Volume (vph)		276		173					250	184	226	208	
\% Heavy Vehicles		10		48					48	48	10	10	
PHF		0.90		0.90					0.90	0.90	0.90	0.90	
Pretimed/Actuated (P/A)		A		A					A	A	A	A	
Startup Lost Time		2.0		2.0					2.0	2.0	2.0	2.0	
Extension of Effective Green		2.0		2.0					2.0	2.0	2.0	2.0	
Arrival Type		3		3					3	3	3	3	
Unit Extension		3.0		3.0					3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0	0	0	0	
Lane Width		12.0		12.0					12.0	12.0	12.0	12.0	
Parking/Grade/Parking		N	0	N	$N$	0	$N$	$N$	0	N	N	0	$N$
Parking/Hour													
Bus Stops/Hour		0		0					0	0	0	0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	EB Only	02		03			SB On		NS Pe		07		
Timing	G = 23.0 ${ }^{\text {G }}$		G =		G =		G = 8.0		G = 25			G =	
	$Y=5$ $Y$		$Y=$		$Y=$		$\mathrm{Y}=4$		Y = 5			$Y=$	
Duration of Analysis (hrs) $=0.25$									Cycle L	ngth C	70.0		

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$		$R$					$T$	$R$	$L$	T	
Initial Queue/Lane	0.0		0.0					0.0	0.0	0.0	0.0	
Flow Rate/Lane Group	307		192					278	204	251	231	
Satflow/Lane	1641		1091					1283	1091	1033	1727	
Capacity/Lane Group	1047		358					873	390	561	1738	
Flow Ratio	0.1		0.2					0.1	0.2	0.2	0.1	
v/c Ratio	0.29		0.54					0.32	0.52	0.45	0.13	
I Factor	1.000		1.000					1.000	1.000	1.000	1.000	
Arrival Type	3		3					3	3	3	3	
Platoon Ratio	1.00		1.00					1.00	1.00	1.00	1.00	
PF Factor	1.00		1.00					1.00	1.00	1.00	1.00	
Q1	2.3		3.0					2.1	3.1	2.4	1.2	
kB	0.4		0.3					0.4	0.3	0.4	0.6	
Q2	0.2		0.4					0.2	0.4	0.3	0.1	
Q Average	2.5		3.4					2.2	3.5	2.7	1.3	

Percentile Back of Queue (95th percentile)

fB\%	2.0		2.0					2.0	2.0	2.0	2.1	
Back of Queue	5.0		6.8					4.5	7.0	5.4	2.6	

## Queue Storage Ratio

Queue Spacing	25.0		25.0					25.0	25.0	25.0	25.0	
Queue Storage	0		0					0	0	0	0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT															
General Information								Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed    Time Period AM Peak Period								Intersection SR 222 @ I-40 WB Ramps   Area Type All other areas   Jurisdiction   Fayette County   Analysis Year 2034							
Volume and Timing Input															
				EB				WB			NB			SB	
			LT	TH		RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Number of Lanes							1		1	1	2			2	1
Lane Group							L		$R$	L	$T$			T	$R$
Volume (vph)							143		258	110	698			223	324
\% Heavy Vehicles							48		10	48	48			10	10
PHF							0.90		0.90	0.90	0.90			0.90	0.90
Pretimed/Actuated (P/A)							A		A	A	A			A	A
Startup Lost Time							2.0		2.0	2.0	2.0			2.0	2.0
Extension of Effective Green							2.0		2.0	2.0	2.0			2.0	2.0
Arrival Type							3		3	3	3			3	3
Unit Extension							3.0		3.0	3.0	3.0			3.0	3.0
Ped/Bike/RTOR Volume			0	0			0	0	0	0	0		0	0	0
Lane Width							12.0		12.0	12.0	12.0			12.0	12.0
Parking/Grade/Parking			$N$	0		$N$	N	0	N	N	0	N	$N$	0	N
Parking/Hour															
Bus Stops/Hour							0		0	0	0			0	0
Minimum Pedestrian Time				3.2				3.2			3.2			3.2	
Phasing	WB Only	02		03			04		NB Only		NS Perm		07	08	
Timing	G = 23.0	G =		G =			G =		G = 8.0		$\mathrm{G}=25.0$		G =	G =	
	$\mathrm{Y}=5$	$Y=$			$Y=$		Y =		$Y=4$		$\mathrm{Y}=5$		$\mathrm{Y}=$	$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$											Cycle Length C = 70.0				

## Lane Group Capacity, Control Delay, and LOS Determination



## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				$L$		$R$	$L$	$T$			T	$R$
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				159		287	122	776			248	360
Satflow/Lane				1220		1468	792	1283			1727	1468
Capacity/Lane Group				401		482	430	1292			1175	524
Flow Ratio				0.1		0.2	0.2	0.3			0.1	0.2
v/c Ratio				0.40		0.60	0.28	0.60			0.21	0.69
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				2.4		4.7	1.1	5.5			1.8	6.0
kB				0.3		0.4	0.4	0.5			0.4	0.4
Q2				0.2		0.6	0.1	0.7			0.1	0.8
Q Average				2.6		5.2	1.3	6.2			1.9	6.8
Percentile Back of Queue (95th percentile)												
fB\%				2.0		1.9	2.1	1.9			2.0	1.9
Back of Queue				5.3		10.2	2.6	11.9			3.8	13.0
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95\% Queue Storage Ratio												

## SHORT REPORT



Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB	
Adjusted Flow Rate			147		139	144	440		336	578
Lane Group Capacity			279		336	470	1536		1504	671
v/c Ratio			0.53		0.41	0.31	0.29		0.22	0.86
Green Ratio			0.23		0.23	0.64	0.63		0.46	0.46
Uniform Delay $\mathrm{d}_{1}$			23.7		23.0	5.2	5.9		11.5	17.0
Delay Factor k			0.13		0.11	0.11	0.11		0.11	0.39
Incremental Delay d ${ }_{2}$			1.9		0.8	0.4	0.1		0.1	11.1
PF Factor			1.000		1.000	1.000	1.000		1.000	1.000
Control Delay			25.5		23.8	5.6	6.0		11.6	28.1
Lane Group LOS			C		C	A	A		B	C
Approach Delay				24.7			5.9		22.0	
Approach LOS				C			A		C	
Intersection Delay	17.2				Intersec	ction LO			B	

## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Traditional Diamond

Average Back of Queue												
	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group				$L$		$R$	$L$	$T$			T	$R$
Initial Queue/Lane				0.0		0.0	0.0	0.0			0.0	0.0
Flow Rate/Lane Group				147		139	144	440			336	578
Satflow/Lane				1220		1468	732	1283			1727	1468
Capacity/Lane Group				279		336	470	1536			1504	671
Flow Ratio				0.1		0.1	0.2	0.2			0.1	0.4
v/c Ratio				0.53		0.41	0.31	0.29			0.22	0.86
I Factor				1.000		1.000	1.000	1.000			1.000	1.000
Arrival Type				3		3	3	3			3	3
Platoon Ratio				1.00		1.00	1.00	1.00			1.00	1.00
PF Factor				1.00		1.00	1.00	1.00			1.00	1.00
Q1				2.5		2.3	1.0	2.0			2.1	10.1
kB				0.3		0.3	0.4	0.5			0.5	0.5
Q2				0.3		0.2	0.2	0.2			0.1	2.4
Q Average				2.8		2.5	1.2	2.2			2.2	12.5
Percentile Back of Queue (95th percentile)												
fB\%				2.0		2.0	2.1	2.0			2.0	1.8
Back of Queue				5.7		5.1	2.5	4.6			4.5	22.4
Queue Storage Ratio												
Queue Spacing				25.0		25.0	25.0	25.0			25.0	25.0
Queue Storage				0		0	0	0			0	0
Average Queue Storage Ratio												
95\% Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date O4/18/2011   Performed TM Peak Period   Time Period AM Peak						Intersection SR 222 @ I-40 EB Ramps   Area Type All other areas   Jurisdiction Fayette County   Analysis Year 2014							
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2		2	2				2				
Lane Group		L		$R$	L				T				
Volume (vph)		581		134	326				331				
\% Heavy Vehicles		10		48	10				48				
PHF		0.90		0.90	0.90				0.90				
Pretimed/Actuated (P/A)		A			A				A				
Startup Lost Time		2.0		2.0	2.0				2.0				
Extension of Effective Green		2.0		2.0	2.0				2.0				
Arrival Type		3		3	3				3				
Unit Extension		3.0		3.0	3.0				3.0				
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0		0	0	
Lane Width		12.0		12.0	12.0				12.0				
Parking/Grade/Parking		N	0	N	N	0	$N$	$N$	0	$N$	$N$	0	$N$
Parking/Hour													
Bus Stops/Hour		0		0	0				0				
Minimum Pedestrian Time		02	3.2			3.2			3.2			3.2	
Phasing	Excl. Left		03		04	NB Only			06			08	
Timing	$\mathrm{G}=30.0 \mathrm{G}$	G =	G =		G =	$\mathrm{G}=30.0$		G =		G =		G =	
	$\mathrm{Y}=5$ Y		$Y=$		$Y=$		$\mathrm{Y}=5$	Y		$Y=$		$Y=$	
Duration of Analysis (hrs) $=0.25$								Cycle Length C = 70.0					

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue


Percentile Back of Queue (95th percentile)

fв\%	2.0		2.1	2.0				2.0				
Back of Queue	9.9		2.3	5.1				5.5				

Queue Storage Ratio

Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT														
General Information						Site Information								
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Period   Time Period PM Peak Period						Intersection Area Type Jurisdiction Analysis Year			SR 222 @ I-40 EB Ramps   All other areas   Fayette County   2014					
Volume and Timing Input														
			EB			WB				NB			SB	
		LT	TH	RT	LT	TH		RT	LT	TH	RT	LT	TH	RT
Number of Lanes		2		2	2					2				
Lane Group		L		$R$	L					$T$				
Volume (vph)		271		126	384					382				
\% Heavy Vehicles		10		48	10					48				
PHF		0.90		0.90	0.90					0.90				
Pretimed/Actuated (P/A)		A			A					A				
Startup Lost Time		2.0		2.0	2.0					2.0				
Extension of Effective Green		2.0		2.0	2.0					2.0				
Arrival Type		3		3	3					3				
Unit Extension		3.0		3.0	3.0					3.0				
Ped/Bike/RTOR Volume		0	0	0	0	0			0	0		0	0	
Lane Width		12.0		12.0	12.0					12.0				
Parking/Grade/Parking		N	0	N	N	0		$N$	$N$	0	$N$	$N$	0	$N$
Parking/Hour														
Bus Stops/Hour		0		0	0					0				
Minimum Pedestrian Time		02	3.2			3.2				3.2			3.2	
Phasing	Excl. Left		03		04	NB Only			06		07		08	
Timing	$\mathrm{G}=30.0$	G =	G =		G =	$\mathrm{G}=30.0$			G =		G =		G =	
	$Y=5$		$Y=$		$Y=$		$\mathrm{Y}=$				$\mathrm{Y}=$		$Y=$	
Duration of Analysis (hrs) $=0.25$														

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB		SB	
Adjusted Flow Rate	301	140	427			424			
Lane Group Capacity	1366	828	1366			1047			
v/c Ratio	0.22	0.17	0.31			0.40			
Green Ratio	0.43	0.43	0.43			0.43			
Uniform Delay d ${ }_{1}$	12.6	12.3	13.2			13.8			
Delay Factor k	0.11	0.11	0.11			0.11			
Incremental Delay d ${ }_{2}$	0.1	0.1	0.1			0.3			
PF Factor	1.000	1.000	1.000			1.000			
Control Delay	12.7	12.4	13.3			14.1			
Lane Group LOS	$B$	B	$B$			B			
Approach Delay	12.6		13.3			14.1			
Approach LOS	B		B			$B$			
Intersection Delay	13.3		Intersection LOS					B	

## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue


Percentile Back of Queue (95th percentile)

fв\%	2.0		2.1	2.0				2.0				
Back of Queue	4.1		2.1	6.1				6.5				

Queue Storage Ratio

Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												


SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Time Period   Tim Peak Period						Intersection   Area Type   Jurisdiction   Analysis Year		SR 222 @ I-40 WB Ramps   All other areas   Fayette County $2014$					
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2			2		2					2	
Lane Group		L			L		$R$					T	
Volume (vph)		798			117		257					513	
\% Heavy Vehicles		48			48		10					10	
PHF		0.90			0.90		0.90					0.90	
Pretimed/Actuated (P/A)		A			A							A	
Startup Lost Time		2.0			2.0		2.0					2.0	
Extension of Effective Green		2.0			2.0		2.0					2.0	
Arrival Type		3			3		3					3	
Unit Extension		3.0			3.0		3.0					3.0	
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	
Lane Width		12.0			12.0		12.0					12.0	
Parking/Grade/Parking		N	0	$N$	N	0	N	N	0	$N$	$N$	0	$N$
Parking/Hour													
Bus Stops/Hour		0			0		0					0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	Excl. Left	02	03		04		SB Only	06		07		08	
Timing	$\mathrm{G}=33.0 \quad \mathrm{G}$	G =	G =		G =		$\mathrm{G}=27.0$	G =		G =		G =	
	$\mathrm{Y}=5$ Y		$Y=$		$Y=$		$\mathrm{Y}=5$			Y		Y =	
Duration of Analysis (hrs) $=0.25$								Cycle Length C = 70.0					

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB	
Adjusted Flow Rate	887		130		286				570	
Lane Group Capacity	1116		1116		1002				1269	
v/c Ratio	0.79		0.12		0.29				0.45	
Green Ratio	0.47		0.47		0.39				0.39	
Uniform Delay d ${ }_{1}$	15.6		10.3		14.8				16.0	
Delay Factor k	0.34		0.11		0.11				0.11	
Incremental Delay d ${ }_{2}$	4.1		0.0		0.2				0.3	
PF Factor	1.000		1.000		1.000				1.000	
Control Delay	19.7		10.4		15.0				16.2	
Lane Group LOS	$B$		$B$		$B$				B	
Approach Delay	19.7		13.6						16.2	
Approach LOS	B		B						B	
Intersection Delay	17.3		Intersection LOS						B	

## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$			$L$		$R$					T	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	887			130		286					570	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1116			1116		1002					1269	
Flow Ratio	0.4			0.1		0.1					0.2	
v/c Ratio	0.79			0.12		0.29					0.45	
1 Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	7.5			0.7		2.2					4.3	
kB	0.4			0.4		0.4					0.5	
Q2	1.5			0.1		0.2					0.4	
Q Average	9.0			0.8		2.3					4.7	

## Percentile Back of Queue (95th percentile)

fв\%	1.9			2.1		2.0					2.0	
Back of Queue	16.8			1.6		4.7					9.2	

## Queue Storage Ratio

Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												


SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Time Period   TM Peak Period						Intersection   Area Type   Jurisdiction   Analysis Year		SR 222 @ I-40 WB Ramps   All other areas   Fayette County   2014					
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2			2		2					2	
Lane Group		L			L		$R$					T	
Volume (vph)		511			98		122					800	
\% Heavy Vehicles		48			48		10					10	
PHF		0.90			0.90		0.90					0.90	
Pretimed/Actuated (P/A)		A			A							A	
Startup Lost Time		2.0			2.0		2.0					2.0	
Extension of Effective Green		2.0			2.0		2.0					2.0	
Arrival Type		3			3		3					3	
Unit Extension		3.0			3.0		3.0					3.0	
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	
Lane Width		12.0			12.0		12.0					12.0	
Parking/Grade/Parking		N	0	$N$	N	0	$N$	N	0	$N$	$N$	0	$N$
Parking/Hour													
Bus Stops/Hour		0			0		0					0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	Excl. Left	02	03		04		SB Only	06		07		08	
Timing	$\mathrm{G}=30.0$ G	G =	G =		G =		$\mathrm{G}=30.0$	G =		G =		G =	
	$Y=5$ $Y$		$\mathrm{Y}=$		$Y=$		$\mathrm{Y}=5$			Y $=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$								Cycle Length C = 70.0					

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$			L		$R$					T	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	568			109		136					889	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1015			1015		1114					1410	
Flow Ratio	0.2			0.0		0.1					0.3	
v/c Ratio	0.56			0.11		0.12					0.63	
I Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	4.3			0.7		0.9					7.1	
kB	0.4			0.4		0.4					0.5	
Q2	0.5			0.0		0.1					0.8	
Q Average	4.8			0.7		1.0					7.9	

## Percentile Back of Queue (95th percentile)

fв\%	2.0			2.1		2.1					1.9	
Back of Queue	9.3			1.5		2.0					14.9	

## Queue Storage Ratio

Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT														
General Information						Site Information								
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Period   Time Period AM Peak Period						Intersection Area Type Jurisdiction Analysis Year			SR 222 @ I-40 EB Ramps   All other areas   Fayette County   2034					
Volume and Timing Input														
			EB			WB				NB			SB	
		LT	TH	RT	LT	TH		RT	LT	TH	RT	LT	TH	RT
Number of Lanes		2		2	2					2				
Lane Group		$L$		$R$	L					$T$				
Volume (vph)		586		168	366					377				
\% Heavy Vehicles		10		48	10					48				
PHF		0.90		0.90	0.90					0.90				
Pretimed/Actuated (P/A)		A			A					A				
Startup Lost Time		2.0		2.0	2.0					2.0				
Extension of Effective Green		2.0		2.0	2.0					2.0				
Arrival Type		3		3	3					3				
Unit Extension		3.0		3.0	3.0					3.0				
Ped/Bike/RTOR Volume		0	0	0	0	0			0	0		0	0	
Lane Width		12.0		12.0	12.0					12.0				
Parking/Grade/Parking		N	0	N	N	0		$N$	$N$	0	$N$	$N$	0	$N$
Parking/Hour														
Bus Stops/Hour		0		0	0					0				
Minimum Pedestrian Time		02	3.2			3.2				3.2			3.2	
Phasing	Excl. Left		03		04	NB Only			06		07		08	
Timing	$\mathrm{G}=30.0$	G =	G =		G =	$\mathrm{G}=30.0$			G =		G =		G =	
			Y =		$Y=$	$Y=5$			Y =		$\mathrm{Y}=$		$Y=$	
Duration of Analysis (hrs) $=0.25$									Cycle Length C = 70.0					

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue


Percentile Back of Queue (95th percentile)

fв\%	2.0		2.1	2.0				2.0				
Back of Queue	10.0		2.9	5.8				6.5				

Queue Storage Ratio

Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

## SHORT REPORT

SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date O4/18/2011   Performed Time Period PM Peak Period						Intersection SR 222 @ I-40 EB Ramps   Area Type All other areas   Jurisdiction Fayette County   Analysis Year 2034							
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2		2	2				2				
Lane Group		L		$R$	L				T				
Volume (vph)		276		173	434				250				
\% Heavy Vehicles		10		48	10				48				
PHF		0.90		0.90	0.90				0.90				
Pretimed/Actuated (P/A)		A			A				A				
Startup Lost Time		2.0		2.0	2.0				2.0				
Extension of Effective Green		2.0		2.0	2.0				2.0				
Arrival Type		3		3	3				3				
Unit Extension		3.0		3.0	3.0				3.0				
Ped/Bike/RTOR Volume		0	0	0	0	0		0	0		0	0	
Lane Width		12.0		12.0	12.0				12.0				
Parking/Grade/Parking		N	0	N	N	0	$N$	$N$	0	$N$	$N$	0	$N$
Parking/Hour													
Bus Stops/Hour		0		0	0				0				
Minimum Pedestrian Time		02	3.2			3.2			3.2			3.2	
Phasing	Excl. Left		03		04	NB Only			06			08	
Timing	$\mathrm{G}=30.0 \mathrm{G}$	G =	G =		G =	$\mathrm{G}=30.0$		G =		G =		G =	
	$\mathrm{Y}=5$ Y		$Y=$		$Y=$		$\mathrm{Y}=5$	Y		$Y=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$			( 120										

Lane Group Capacity, Control Delay, and LOS Determination


## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue


Percentile Back of Queue (95th percentile)

fB\%	2.0		2.1	2.0				2.0				
Back of Queue	4.2		3.0	7.0				4.0				

Queue Storage Ratio

Queue Spacing	25.0		25.0	25.0				25.0				
Queue Storage	0		0	0				0				
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												


SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Time Period AM Peak Period						Intersection Area Type Jurisdiction Analysis Year		SR 222 @ I-40 WB Ramps   All other areas   Fayette County   2034					
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2			2		2					2	
Lane Group		L			L		$R$					T	
Volume (vph)		808			143		258					547	
\% Heavy Vehicles		48			48		10					10	
PHF		0.90			0.90		0.90					0.90	
Pretimed/Actuated (P/A)		A			A							A	
Startup Lost Time		2.0			2.0		2.0					2.0	
Extension of Effective Green		2.0			2.0		2.0					2.0	
Arrival Type		3			3		3					3	
Unit Extension		3.0			3.0		3.0					3.0	
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	
Lane Width		12.0			12.0		12.0					12.0	
Parking/Grade/Parking		N	0	$N$	$N$	0	$N$	N	0	N	$N$	0	$N$
Parking/Hour													
Bus Stops/Hour		0			0		0					0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	Excl. Left	02	03		04		SB Only	06		07		08	
Timing	$\mathrm{G}=33.0$ G	G =	G =		G =		$\mathrm{G}=27.0$	G =		G =		G =	
	$Y=5$ $Y$		$\mathrm{Y}=$		$Y=$		$\mathrm{Y}=5$	Y		Y $=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$								Cycle Length $\mathrm{C}=70.0$					

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB	
Adjusted Flow Rate	898		159		287				608	
Lane Group Capacity	1116		1116		1002				1269	
v/c Ratio	0.80		0.14		0.29				0.48	
Green Ratio	0.47		0.47		0.39				0.39	
Uniform Delay d ${ }_{1}$	15.8		10.5		14.8				16.2	
Delay Factor k	0.35		0.11		0.11				0.11	
Incremental Delay d ${ }_{2}$	4.4		0.1		0.2				0.3	
PF Factor	1.000		1.000		1.000				1.000	
Control Delay	20.2		10.5		15.0				16.5	
Lane Group LOS	C		$B$		$B$				B	
Approach Delay	20.2		13.4						16.5	
Approach LOS	C		B						B	
Intersection Delay	17.5		Intersection LOS						B	

## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$			L		$R$					T	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	898			159		287					608	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1116			1116		1002					1269	
Flow Ratio	0.4			0.1		0.1					0.2	
v/c Ratio	0.80			0.14		0.29					0.48	
I Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	7.7			0.9		2.2					4.7	
kB	0.4			0.4		0.4					0.5	
Q2	1.6			0.1		0.2					0.4	
Q Average	9.2			1.0		2.3					5.1	

## Percentile Back of Queue (95th percentile)

fв\%	1.9			2.1		2.0					2.0	
Back of Queue	17.2			2.0		4.8					9.9	

## Queue Storage Ratio

Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												


SHORT REPORT													
General Information						Site Information							
Analyst SKB   Agency or Co. TDOT/TranSystems   Date 04/18/2011   Performed Time Period PM Peak Period						Intersection Area Type Jurisdiction Analysis Year		SR 222 @ I-40 WB Ramps   All other areas   Fayette County   2034					
Volume and Timing Input													
			EB			WB			NB			SB	
		LT	TH	RT									
Number of Lanes		2			2		2					2	
Lane Group		L			L		$R$					T	
Volume (vph)		526			132		125					822	
\% Heavy Vehicles		48			48		10					10	
PHF		0.90			0.90		0.90					0.90	
Pretimed/Actuated (P/A)		A			A							A	
Startup Lost Time		2.0			2.0		2.0					2.0	
Extension of Effective Green		2.0			2.0		2.0					2.0	
Arrival Type		3			3		3					3	
Unit Extension		3.0			3.0		3.0					3.0	
Ped/Bike/RTOR Volume		0	0		0	0	0	0	0		0	0	
Lane Width		12.0			12.0		12.0					12.0	
Parking/Grade/Parking		N	0	$N$	$N$	0	$N$	N	0	N	$N$	0	$N$
Parking/Hour													
Bus Stops/Hour		0			0		0					0	
Minimum Pedestrian Time			3.2			3.2			3.2			3.2	
Phasing	Excl. Left	02	03		04		SB Only	06		07		08	
Timing	$\mathrm{G}=30.0$ G	G =	G =		G =		$\mathrm{G}=30.0$	G =		G =		G =	
	$Y=5$ $Y$		Y =		$Y=$		$\mathrm{Y}=5$	Y		Y $=$		$\mathrm{Y}=$	
Duration of Analysis (hrs) $=0.25$								Cycle Length C = 70.0					

Lane Group Capacity, Control Delay, and LOS Determination

	EB		WB			NB			SB	
Adjusted Flow Rate	584		147		139				913	
Lane Group Capacity	1015		1015		1114				1410	
v/c Ratio	0.58		0.14		0.12				0.65	
Green Ratio	0.43		0.43		0.43				0.43	
Uniform Delay d ${ }_{1}$	15.2		12.2		12.1				15.8	
Delay Factor k	0.17		0.11		0.11				0.23	
Incremental Delay $\mathrm{d}_{2}$	0.8		0.1		0.1				1.0	
PF Factor	1.000		1.000		1.000				1.000	
Control Delay	16.0		12.3		12.1				16.9	
Lane Group LOS	$B$		$B$		B				B	
Approach Delay	16.0		12.2						16.9	
Approach LOS	B		B						B	
Intersection Delay	15.8		Intersection LOS						$B$	

## BACK-OF-QUEUE WORKSHEET

## General Information

Project Description Diverging Diamond Interchange
Average Back of Queue

	EB			WB			NB			SB		
	LT	TH	RT									
Lane Group	$L$			$L$		$R$					T	
Initial Queue/Lane	0.0			0.0		0.0					0.0	
Flow Rate/Lane Group	584			147		139					913	
Satflow/Lane	1219			1219		1468					1727	
Capacity/Lane Group	1015			1015		1114					1410	
Flow Ratio	0.2			0.1		0.1					0.3	
v/c Ratio	0.58			0.14		0.12					0.65	
1 Factor	1.000			1.000		1.000					1.000	
Arrival Type	3			3		3					3	
Platoon Ratio	1.00			1.00		1.00					1.00	
PF Factor	1.00			1.00		1.00					1.00	
Q1	4.4			0.9		0.9					7.4	
kB	0.4			0.4		0.4					0.5	
Q2	0.5			0.1		0.1					0.9	
Q Average	5.0			1.0		1.0					8.3	

## Percentile Back of Queue (95th percentile)

fв\%	2.0			2.1		2.1					1.9	
Back of Queue	9.7			2.0		2.0					15.5	

## Queue Storage Ratio

Queue Spacing	25.0			25.0		25.0					25.0	
Queue Storage	0			0		0					0	
Average Queue Storage Ratio												
$95 \%$ Queue Storage Ratio												

